Cargando…
EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression
BACKGROUND: B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a...
Autores principales: | Lian, Yao, Ge, Meng, Pan, Xian-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307399/ https://www.ncbi.nlm.nih.gov/pubmed/25523327 http://dx.doi.org/10.1186/s12859-014-0414-y |
Ejemplares similares
-
Improved method for predicting linear B-cell epitopes
por: Larsen, Jens Erik Pontoppidan, et al.
Publicado: (2006) -
Improved Method for Linear B-Cell Epitope Prediction Using Antigen’s Primary Sequence
por: Singh, Harinder, et al.
Publicado: (2013) -
Deep learning methods improve linear B-cell epitope prediction
por: Liu, Tao, et al.
Publicado: (2020) -
EpitopeVec: linear epitope prediction using deep protein sequence embeddings
por: Bahai, Akash, et al.
Publicado: (2021) -
Predicting linear B‐cell epitopes using string kernels
por: EL‐Manzalawy, Yasser, et al.
Publicado: (2008)