Cargando…
Guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes
B-cell chronic lymphocytic leukemia (B-CLL) is one of the most common leukemias among the elderly and, despite many efforts, still stays incurable. Recent studies point to the microenvironment as the critical factor providing leukemic lymphocytes with pro-survival signals. Thus, the neighboring cell...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308641/ https://www.ncbi.nlm.nih.gov/pubmed/24337970 http://dx.doi.org/10.1007/s10238-013-0268-z |
_version_ | 1782354560552009728 |
---|---|
author | Filip, Agata A. Ciseł, Bogumiła Wąsik-Szczepanek, Ewa |
author_facet | Filip, Agata A. Ciseł, Bogumiła Wąsik-Szczepanek, Ewa |
author_sort | Filip, Agata A. |
collection | PubMed |
description | B-cell chronic lymphocytic leukemia (B-CLL) is one of the most common leukemias among the elderly and, despite many efforts, still stays incurable. Recent studies point to the microenvironment as the critical factor providing leukemic lymphocytes with pro-survival signals. Thus, the neighboring cells appear to be a perfect target for antileukemic therapy. Nurse-like cells (NLCs) largely contribute to CLL microenvironmental support. We developed the CLL lymphocyte/NLC co-culture model for the investigation of microenvironmental interactions. Viability and apoptosis were investigated in CLL lymphocytes treated with dexamethasone (DEX) and chlorambucil (CLB), with and without NLCs’ support. For the first time, the capacity of DEX and CLB to affect NLCs viability was also evaluated. Apoptosis-associated gene expression profiles of leukemic lymphocytes ex vivo and cultured with NLCs were assessed by expression arrays. CLL lymphocytes escaped spontaneous apoptosis for several months when cultured with NLCs. The presence of NLCs significantly reduced apoptosis induced with DEX and CLB (p < 0.001; p = 0.012, respectively), and their protective effect was more evident than the effect of recombinant SDF1. Both DEX and CLB also decreased NLCs viability, but to a lesser extent (mean viability in DEX-treated cultures was 37.79 % in NLCs compared to 29.24 % in lymphocytes). NLCs induced the expression of important anti-apoptotic genes in cultured CLL lymphocytes; median expression of BCL2, SURVIVIN, BCL2A1, and XIAP was significantly higher as compared to ex vivo status. The CLL lymphocyte/NLC co-culture makes up the convenient and close to the natural-state model for studying the relationship between leukemic cells and the microenvironment. Direct cell-to-cell contact with NLCs increases the expression of anti-apoptotic genes in CLL lymphocytes, thus protecting them against induced apoptosis. As the effect of antileukemic drugs is not so apparent in NLCs, the combined therapy targeted at both lymphocytes and the microenvironment should be considered for CLL patients. Simultaneous aiming at the disruption of several different signaling pathways and/or anti-apoptotic proteins may further improve treatment efficiency. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10238-013-0268-z) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4308641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-43086412015-01-30 Guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes Filip, Agata A. Ciseł, Bogumiła Wąsik-Szczepanek, Ewa Clin Exp Med Original Article B-cell chronic lymphocytic leukemia (B-CLL) is one of the most common leukemias among the elderly and, despite many efforts, still stays incurable. Recent studies point to the microenvironment as the critical factor providing leukemic lymphocytes with pro-survival signals. Thus, the neighboring cells appear to be a perfect target for antileukemic therapy. Nurse-like cells (NLCs) largely contribute to CLL microenvironmental support. We developed the CLL lymphocyte/NLC co-culture model for the investigation of microenvironmental interactions. Viability and apoptosis were investigated in CLL lymphocytes treated with dexamethasone (DEX) and chlorambucil (CLB), with and without NLCs’ support. For the first time, the capacity of DEX and CLB to affect NLCs viability was also evaluated. Apoptosis-associated gene expression profiles of leukemic lymphocytes ex vivo and cultured with NLCs were assessed by expression arrays. CLL lymphocytes escaped spontaneous apoptosis for several months when cultured with NLCs. The presence of NLCs significantly reduced apoptosis induced with DEX and CLB (p < 0.001; p = 0.012, respectively), and their protective effect was more evident than the effect of recombinant SDF1. Both DEX and CLB also decreased NLCs viability, but to a lesser extent (mean viability in DEX-treated cultures was 37.79 % in NLCs compared to 29.24 % in lymphocytes). NLCs induced the expression of important anti-apoptotic genes in cultured CLL lymphocytes; median expression of BCL2, SURVIVIN, BCL2A1, and XIAP was significantly higher as compared to ex vivo status. The CLL lymphocyte/NLC co-culture makes up the convenient and close to the natural-state model for studying the relationship between leukemic cells and the microenvironment. Direct cell-to-cell contact with NLCs increases the expression of anti-apoptotic genes in CLL lymphocytes, thus protecting them against induced apoptosis. As the effect of antileukemic drugs is not so apparent in NLCs, the combined therapy targeted at both lymphocytes and the microenvironment should be considered for CLL patients. Simultaneous aiming at the disruption of several different signaling pathways and/or anti-apoptotic proteins may further improve treatment efficiency. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10238-013-0268-z) contains supplementary material, which is available to authorized users. Springer International Publishing 2013-12-12 2015 /pmc/articles/PMC4308641/ /pubmed/24337970 http://dx.doi.org/10.1007/s10238-013-0268-z Text en © The Author(s) 2013 https://creativecommons.org/licenses/by/2.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Original Article Filip, Agata A. Ciseł, Bogumiła Wąsik-Szczepanek, Ewa Guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes |
title | Guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes |
title_full | Guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes |
title_fullStr | Guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes |
title_full_unstemmed | Guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes |
title_short | Guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes |
title_sort | guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308641/ https://www.ncbi.nlm.nih.gov/pubmed/24337970 http://dx.doi.org/10.1007/s10238-013-0268-z |
work_keys_str_mv | AT filipagataa guiltybystandersnurselikecellsasamodelofmicroenvironmentalsupportforleukemiclymphocytes AT cisełbogumiła guiltybystandersnurselikecellsasamodelofmicroenvironmentalsupportforleukemiclymphocytes AT wasikszczepanekewa guiltybystandersnurselikecellsasamodelofmicroenvironmentalsupportforleukemiclymphocytes |