Cargando…
Glial scar size, inhibitor concentration, and growth of regenerating axons after spinal cord transection☆
A mathematical model has been formulated in accordance with cell chemotaxis and relevant experimental data. A three-dimensional lattice Boltzmann method was used for numerical simulation. The present study observed the effects of glial scar size and inhibitor concentration on regenerative axonal gro...
Autores principales: | Zhu, Weiping, Sun, Yanping, Chen, Xuning, Feng, Shiliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308747/ https://www.ncbi.nlm.nih.gov/pubmed/25657689 http://dx.doi.org/10.3969/j.issn.1673-5374.2012.20.001 |
Ejemplares similares
-
X-irradiation for inhibiting glial scar formation in injured spinal cord
por: Ning, Guangzhi, et al.
Publicado: (2013) -
Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury: Electrophysiological changes and long-term efficacy
por: Yao, Liqing, et al.
Publicado: (2013) -
Methylprednisolone inhibits Nogo-A protein expression after acute spinal cord injury
por: Fu, Zhaozong, et al.
Publicado: (2013) -
Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury☆
por: Zhang, Chun, et al.
Publicado: (2013) -
Optimal time for subarachnoid transplantation of neural progenitor cells in the treatment of contusive spinal cord injury
por: Liu, Yan, et al.
Publicado: (2013)