Cargando…

Hydrodynamic and kinetic study of a hybrid detoxification process with zero liquid discharge system in an industrial wastewater treatment

This work focused on the degradation of toxic organic compounds such as methyl violet dye (MV) in water, using a combined photocatalysis/low pressure reverse osmosis (LPRO) system. The performance of the hybrid system was investigated in terms of the degradation efficiency of MV, COD and membrane se...

Descripción completa

Detalles Bibliográficos
Autores principales: Abid, Mohammad Fadhil, Abdulrahman, Amir Aziz, Hamza, Noor Hussein
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308886/
https://www.ncbi.nlm.nih.gov/pubmed/25648793
http://dx.doi.org/10.1186/s40201-014-0145-z
Descripción
Sumario:This work focused on the degradation of toxic organic compounds such as methyl violet dye (MV) in water, using a combined photocatalysis/low pressure reverse osmosis (LPRO) system. The performance of the hybrid system was investigated in terms of the degradation efficiency of MV, COD and membrane separation of TiO(2). The aim of the present study was to design a novel solar reactor and analyze its performance for removal of MV from water with titanium dioxide as the photocatalyst. Various operating parameters were studied to investigate the behavior of the designed reactor like initial dye concentration (C = 10-50 mg/L), loading of catalyst (C(TiO2) = 200-800 mg/L), suspension flow rate (Q(L) = 0.3-1.5 L/min), pH of suspension (5–10), and H(2)O(2) concentration (C(H2O2) = 200-1000 mg/L). The operating parameters were optimized to give higher efficiency to the reactor performance. Optimum parameters of the photocatalysis process were loading of catalyst (400 mg/L), suspension flow rate (0.5 L/min), H(2)O(2) concentration (400 mg/L), and pH = 5. The designed reactor when operating at optimum conditions offered a degradation of MV up to 0.9527 within one hours of operation time, while a conversion of 0.9995 was obtained in three hours. The effluent from the photocatalytic reactor was fed to a LPRO separation system which produced permeate of turbidity value of 0.09 NTU which is closed to that of drinking water (i.e., 0.08 NTU). The product water was analyzed using UV-spectrophotometer and FTIR. The analysis results confirmed that the water from the Hybrid-System could be safely recycled and reuse. It was found that the kinetics of dye degradation was first order with respect to dye concentration and could be well described by Langmuir-Hinshelwood model. A power-law based empirical correlation was developed for the photocatalysis system, related the dye degradation (R) with studied operating conditions.