Cargando…
Predicting breast cancer using an expression values weighted clinical classifier
BACKGROUND: Clinical data, such as patient history, laboratory analysis, ultrasound parameters-which are the basis of day-to-day clinical decision support-are often used to guide the clinical management of cancer in the presence of microarray data. Several data fusion techniques are available to int...
Autores principales: | Thomas, Minta, Brabanter, Kris De, Suykens, Johan AK, Moor, Bart De |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4308909/ https://www.ncbi.nlm.nih.gov/pubmed/25551433 http://dx.doi.org/10.1186/s12859-014-0411-1 |
Ejemplares similares
-
New bandwidth selection criterion for Kernel PCA: Approach to dimensionality reduction and classification problems
por: Thomas, Minta, et al.
Publicado: (2014) -
L(2)-norm multiple kernel learning and its application to biomedical data fusion
por: Yu, Shi, et al.
Publicado: (2010) -
A kernel-based integration of genome-wide data for clinical decision support
por: Daemen, Anneleen, et al.
Publicado: (2009) -
Predicting receptor-ligand pairs through kernel learning
por: Iacucci, Ernesto, et al.
Publicado: (2011) -
Improved Microarray-Based Decision Support with Graph Encoded Interactome Data
por: Daemen, Anneleen, et al.
Publicado: (2010)