Cargando…
ECG Morphological Variability in Beat Space for Risk Stratification After Acute Coronary Syndrome
BACKGROUND: Identification of patients who are at high risk of adverse cardiovascular events after an acute coronary syndrome (ACS) remains a major challenge in clinical cardiology. We hypothesized that quantifying variability in electrocardiogram (ECG) morphology may improve risk stratification pos...
Autores principales: | Liu, Yun, Syed, Zeeshan, Scirica, Benjamin M., Morrow, David A., Guttag, John V., Stultz, Collin M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309066/ https://www.ncbi.nlm.nih.gov/pubmed/24963105 http://dx.doi.org/10.1161/JAHA.114.000981 |
Ejemplares similares
-
Beatquency domain and machine learning improve prediction of cardiovascular death after acute coronary syndrome
por: Liu, Yun, et al.
Publicado: (2016) -
Machine Learning Improves Risk Stratification After Acute Coronary Syndrome
por: Myers, Paul D., et al.
Publicado: (2017) -
Choosing Clinical Variables for Risk Stratification Post-Acute Coronary Syndrome
por: Myers, Paul D., et al.
Publicado: (2019) -
ECG-guided non-invasive estimation of pulmonary congestion in patients with heart failure
por: Raghu, Aniruddh, et al.
Publicado: (2023) -
Morphological Autoencoders for Beat-by-Beat Atrial Fibrillation Detection Using Single-Lead ECG
por: Silva, Rafael, et al.
Publicado: (2023)