Cargando…

Constructor theory of information

We propose a theory of information expressed solely in terms of which transformations of physical systems are possible and which are impossible—i.e. in constructor-theoretic terms. It includes conjectured, exact laws of physics expressing the regularities that allow information to be physically inst...

Descripción completa

Detalles Bibliográficos
Autores principales: Deutsch, David, Marletto, Chiara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309123/
https://www.ncbi.nlm.nih.gov/pubmed/25663803
http://dx.doi.org/10.1098/rspa.2014.0540
Descripción
Sumario:We propose a theory of information expressed solely in terms of which transformations of physical systems are possible and which are impossible—i.e. in constructor-theoretic terms. It includes conjectured, exact laws of physics expressing the regularities that allow information to be physically instantiated. Although these laws are directly about information, independently of the details of particular physical instantiations, information is not regarded as an a priori mathematical or logical concept, but as something whose nature and properties are determined by the laws of physics alone. This theory solves a problem at the foundations of existing information theory, namely that information and distinguishability are each defined in terms of the other. It also explains the relationship between classical and quantum information, and reveals the single, constructor-theoretic property underlying the most distinctive phenomena associated with the latter, including the lack of in-principle distinguishability of some states, the impossibility of cloning, the existence of pairs of variables that cannot simultaneously have sharp values, the fact that measurement processes can be both deterministic and unpredictable, the irreducible perturbation caused by measurement, and locally inaccessible information (as in entangled systems).