Cargando…
The Roads to Mitochondrial Dysfunction in a Rat Model of Posttraumatic Syringomyelia
The pathophysiology of posttraumatic syringomyelia is incompletely understood. We examined whether local ischemia occurs after spinal cord injury. If so, whether it causes neuronal mitochondrial dysfunction and depletion, and subsequent energy metabolism impairment results in cell starvation of ener...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309244/ https://www.ncbi.nlm.nih.gov/pubmed/25685811 http://dx.doi.org/10.1155/2015/831490 |
_version_ | 1782354664002420736 |
---|---|
author | Hu, Zhiqiang Tu, Jian |
author_facet | Hu, Zhiqiang Tu, Jian |
author_sort | Hu, Zhiqiang |
collection | PubMed |
description | The pathophysiology of posttraumatic syringomyelia is incompletely understood. We examined whether local ischemia occurs after spinal cord injury. If so, whether it causes neuronal mitochondrial dysfunction and depletion, and subsequent energy metabolism impairment results in cell starvation of energy and even cell death, contributing to the enlargement of the cavity. Local blood flow was measured in a rat model of posttraumatic syringomyelia that had received injections of quisqualic acid and kaolin. We found an 86 ± 11% reduction of local blood flow at C8 where a cyst formed at 6 weeks after syrinx induction procedure (P < 0.05), and no difference in blood flow rate between the laminectomy and intact controls. Electron microscopy confirmed irreversible neuronal mitochondrion depletion surrounding the cyst, but recoverable mitochondrial loses in laminectomy rats. Profound energy loss quantified in the spinal cord of syrinx animals, and less ATP and ADP decline observed in laminectomy rats. Our findings demonstrate that an excitotoxic injury induces local ischemia in the spinal cord and results in neuronal mitochondrial depletion, and profound ATP loss, contributing to syrinx enlargement. Ischemia did not occur following laminectomy induced trauma in which mitochondrial loss and decline in ATP were reversible. This confirms excitotoxic injury contributing to the pathology of posttraumatic syringomyelia. |
format | Online Article Text |
id | pubmed-4309244 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-43092442015-02-15 The Roads to Mitochondrial Dysfunction in a Rat Model of Posttraumatic Syringomyelia Hu, Zhiqiang Tu, Jian Biomed Res Int Research Article The pathophysiology of posttraumatic syringomyelia is incompletely understood. We examined whether local ischemia occurs after spinal cord injury. If so, whether it causes neuronal mitochondrial dysfunction and depletion, and subsequent energy metabolism impairment results in cell starvation of energy and even cell death, contributing to the enlargement of the cavity. Local blood flow was measured in a rat model of posttraumatic syringomyelia that had received injections of quisqualic acid and kaolin. We found an 86 ± 11% reduction of local blood flow at C8 where a cyst formed at 6 weeks after syrinx induction procedure (P < 0.05), and no difference in blood flow rate between the laminectomy and intact controls. Electron microscopy confirmed irreversible neuronal mitochondrion depletion surrounding the cyst, but recoverable mitochondrial loses in laminectomy rats. Profound energy loss quantified in the spinal cord of syrinx animals, and less ATP and ADP decline observed in laminectomy rats. Our findings demonstrate that an excitotoxic injury induces local ischemia in the spinal cord and results in neuronal mitochondrial depletion, and profound ATP loss, contributing to syrinx enlargement. Ischemia did not occur following laminectomy induced trauma in which mitochondrial loss and decline in ATP were reversible. This confirms excitotoxic injury contributing to the pathology of posttraumatic syringomyelia. Hindawi Publishing Corporation 2015 2015-01-13 /pmc/articles/PMC4309244/ /pubmed/25685811 http://dx.doi.org/10.1155/2015/831490 Text en Copyright © 2015 Z. Hu and J. Tu. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Hu, Zhiqiang Tu, Jian The Roads to Mitochondrial Dysfunction in a Rat Model of Posttraumatic Syringomyelia |
title | The Roads to Mitochondrial Dysfunction in a Rat Model of Posttraumatic Syringomyelia |
title_full | The Roads to Mitochondrial Dysfunction in a Rat Model of Posttraumatic Syringomyelia |
title_fullStr | The Roads to Mitochondrial Dysfunction in a Rat Model of Posttraumatic Syringomyelia |
title_full_unstemmed | The Roads to Mitochondrial Dysfunction in a Rat Model of Posttraumatic Syringomyelia |
title_short | The Roads to Mitochondrial Dysfunction in a Rat Model of Posttraumatic Syringomyelia |
title_sort | roads to mitochondrial dysfunction in a rat model of posttraumatic syringomyelia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309244/ https://www.ncbi.nlm.nih.gov/pubmed/25685811 http://dx.doi.org/10.1155/2015/831490 |
work_keys_str_mv | AT huzhiqiang theroadstomitochondrialdysfunctioninaratmodelofposttraumaticsyringomyelia AT tujian theroadstomitochondrialdysfunctioninaratmodelofposttraumaticsyringomyelia AT huzhiqiang roadstomitochondrialdysfunctioninaratmodelofposttraumaticsyringomyelia AT tujian roadstomitochondrialdysfunctioninaratmodelofposttraumaticsyringomyelia |