Cargando…

Differential expression of microRNAs and other small RNAs in barley between water and drought conditions

Drought is a major constraint to crop production, and microRNAs (miRNAs) play an important role in plant drought tolerance. Analysis of miRNAs and other classes of small RNAs (sRNAs) in barley grown under water and drought conditions reveals that drought selectively regulates expression of miRNAs an...

Descripción completa

Detalles Bibliográficos
Autores principales: Hackenberg, Michael, Gustafson, Perry, Langridge, Peter, Shi, Bu-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309496/
https://www.ncbi.nlm.nih.gov/pubmed/24975557
http://dx.doi.org/10.1111/pbi.12220
Descripción
Sumario:Drought is a major constraint to crop production, and microRNAs (miRNAs) play an important role in plant drought tolerance. Analysis of miRNAs and other classes of small RNAs (sRNAs) in barley grown under water and drought conditions reveals that drought selectively regulates expression of miRNAs and other classes of sRNAs. Low-expressed miRNAs and all repeat-associated siRNAs (rasiRNAs) tended towards down-regulation, while tRNA-derived sRNAs (tsRNAs) had the tendency to be up-regulated, under drought. Antisense sRNAs (putative siRNAs) did not have such a tendency under drought. In drought-tolerant transgenic barley overexpressing DREB transcription factor, most of the low-expressed miRNAs were also down-regulated. In contrast, tsRNAs, rasiRNAs and other classes of sRNAs were not consistently expressed between the drought-treated and transgenic plants. The differential expression of miRNAs and siRNAs was further confirmed by Northern hybridization and quantitative real-time PCR (qRT-PCR). Targets of the drought-regulated miRNAs and siRNAs were predicted, identified by degradome libraries and confirmed by qRT-PCR. Their functions are diverse, but most are involved in transcriptional regulation. Our data provide insight into the expression profiles of miRNAs and other sRNAs, and their relationship under drought, thereby helping understand how miRNAs and sRNAs respond to drought stress in cereal crops.