Cargando…
Polarised Clathrin-Mediated Endocytosis of EGFR During Chemotactic Invasion
Directed cell migration is critical for numerous physiological processes including development and wound healing. However chemotaxis is also exploited during cancer progression. Recent reports have suggested links between vesicle trafficking pathways and directed cell migration. Very little is known...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons A/S
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309520/ https://www.ncbi.nlm.nih.gov/pubmed/24921075 http://dx.doi.org/10.1111/tra.12165 |
_version_ | 1782354711362404352 |
---|---|
author | Mutch, Laura Jane Howden, Jake Davey Jenner, Emma Poppy Louise Poulter, Natalie Sarah Rappoport, Joshua Zachary |
author_facet | Mutch, Laura Jane Howden, Jake Davey Jenner, Emma Poppy Louise Poulter, Natalie Sarah Rappoport, Joshua Zachary |
author_sort | Mutch, Laura Jane |
collection | PubMed |
description | Directed cell migration is critical for numerous physiological processes including development and wound healing. However chemotaxis is also exploited during cancer progression. Recent reports have suggested links between vesicle trafficking pathways and directed cell migration. Very little is known about the potential roles of endocytosis pathways during metastasis. Therefore we performed a series of studies employing a previously characterised model for chemotactic invasion of cancer cells to assess specific hypotheses potentially linking endocytosis to directed cell migration. Our results demonstrate that clathrin-mediated endocytosis is indispensable for epidermal growth factor (EGF) directed chemotactic invasion of MDA-MB-231 cells. Conversely, caveolar endocytosis is not required in this mode of migration. We further found that chemoattractant receptor (EGFR) trafficking occurs by clathrin-mediated endocytosis and is polarised towards the front of migrating cells. However, we found no role for clathrin-mediated endocytosis in focal adhesion disassembly in this migration model. Thus, this study has characterised the role of endocytosis during chemotactic invasion and has identified functions mechanistically linking clathrin-mediated endocytosis to directed cell motility. |
format | Online Article Text |
id | pubmed-4309520 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | John Wiley & Sons A/S |
record_format | MEDLINE/PubMed |
spelling | pubmed-43095202015-02-09 Polarised Clathrin-Mediated Endocytosis of EGFR During Chemotactic Invasion Mutch, Laura Jane Howden, Jake Davey Jenner, Emma Poppy Louise Poulter, Natalie Sarah Rappoport, Joshua Zachary Traffic Original Articles Directed cell migration is critical for numerous physiological processes including development and wound healing. However chemotaxis is also exploited during cancer progression. Recent reports have suggested links between vesicle trafficking pathways and directed cell migration. Very little is known about the potential roles of endocytosis pathways during metastasis. Therefore we performed a series of studies employing a previously characterised model for chemotactic invasion of cancer cells to assess specific hypotheses potentially linking endocytosis to directed cell migration. Our results demonstrate that clathrin-mediated endocytosis is indispensable for epidermal growth factor (EGF) directed chemotactic invasion of MDA-MB-231 cells. Conversely, caveolar endocytosis is not required in this mode of migration. We further found that chemoattractant receptor (EGFR) trafficking occurs by clathrin-mediated endocytosis and is polarised towards the front of migrating cells. However, we found no role for clathrin-mediated endocytosis in focal adhesion disassembly in this migration model. Thus, this study has characterised the role of endocytosis during chemotactic invasion and has identified functions mechanistically linking clathrin-mediated endocytosis to directed cell motility. John Wiley & Sons A/S 2014-06 2014-03-20 /pmc/articles/PMC4309520/ /pubmed/24921075 http://dx.doi.org/10.1111/tra.12165 Text en © 2014 The Authors. Traffic published by John Wiley & Sons Ltd. http://creativecommons.org/licenses/by/3.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Mutch, Laura Jane Howden, Jake Davey Jenner, Emma Poppy Louise Poulter, Natalie Sarah Rappoport, Joshua Zachary Polarised Clathrin-Mediated Endocytosis of EGFR During Chemotactic Invasion |
title | Polarised Clathrin-Mediated Endocytosis of EGFR During Chemotactic Invasion |
title_full | Polarised Clathrin-Mediated Endocytosis of EGFR During Chemotactic Invasion |
title_fullStr | Polarised Clathrin-Mediated Endocytosis of EGFR During Chemotactic Invasion |
title_full_unstemmed | Polarised Clathrin-Mediated Endocytosis of EGFR During Chemotactic Invasion |
title_short | Polarised Clathrin-Mediated Endocytosis of EGFR During Chemotactic Invasion |
title_sort | polarised clathrin-mediated endocytosis of egfr during chemotactic invasion |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309520/ https://www.ncbi.nlm.nih.gov/pubmed/24921075 http://dx.doi.org/10.1111/tra.12165 |
work_keys_str_mv | AT mutchlaurajane polarisedclathrinmediatedendocytosisofegfrduringchemotacticinvasion AT howdenjakedavey polarisedclathrinmediatedendocytosisofegfrduringchemotacticinvasion AT jenneremmapoppylouise polarisedclathrinmediatedendocytosisofegfrduringchemotacticinvasion AT poulternataliesarah polarisedclathrinmediatedendocytosisofegfrduringchemotacticinvasion AT rappoportjoshuazachary polarisedclathrinmediatedendocytosisofegfrduringchemotacticinvasion |