Cargando…

Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers

It was previously believed that larger metal nanoparticles behave as tiny mirrors that are pushed by the light beam radiative force along the direction of beam propagation, without a chance to be confined. However, several groups have recently reported successful optical trapping of gold and silver...

Descripción completa

Detalles Bibliográficos
Autores principales: Brzobohatý, Oto, Šiler, Martin, Trojek, Jan, Chvátal, Lukáš, Karásek, Vítězslav, Paták, Aleš, Pokorná, Zuzana, Mika, Filip, Zemánek, Pavel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309976/
https://www.ncbi.nlm.nih.gov/pubmed/25630432
http://dx.doi.org/10.1038/srep08106
_version_ 1782354785144406016
author Brzobohatý, Oto
Šiler, Martin
Trojek, Jan
Chvátal, Lukáš
Karásek, Vítězslav
Paták, Aleš
Pokorná, Zuzana
Mika, Filip
Zemánek, Pavel
author_facet Brzobohatý, Oto
Šiler, Martin
Trojek, Jan
Chvátal, Lukáš
Karásek, Vítězslav
Paták, Aleš
Pokorná, Zuzana
Mika, Filip
Zemánek, Pavel
author_sort Brzobohatý, Oto
collection PubMed
description It was previously believed that larger metal nanoparticles behave as tiny mirrors that are pushed by the light beam radiative force along the direction of beam propagation, without a chance to be confined. However, several groups have recently reported successful optical trapping of gold and silver particles as large as 250 nm. We offer a possible explanation based on the fact that metal nanoparticles naturally occur in various non-spherical shapes and their optical properties differ significantly due to changes in localized plasmon excitation. We demonstrate experimentally and support theoretically three-dimensional confinement of large gold nanoparticles in an optical trap based on very low numerical aperture optics. We showed theoretically that the unique properties of gold nanoprisms allow an increase of trapping force by an order of magnitude at certain aspect ratios. These results pave the way to spatial manipulation of plasmonic nanoparticles using an optical fibre, with interesting applications in biology and medicine.
format Online
Article
Text
id pubmed-4309976
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-43099762015-02-09 Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers Brzobohatý, Oto Šiler, Martin Trojek, Jan Chvátal, Lukáš Karásek, Vítězslav Paták, Aleš Pokorná, Zuzana Mika, Filip Zemánek, Pavel Sci Rep Article It was previously believed that larger metal nanoparticles behave as tiny mirrors that are pushed by the light beam radiative force along the direction of beam propagation, without a chance to be confined. However, several groups have recently reported successful optical trapping of gold and silver particles as large as 250 nm. We offer a possible explanation based on the fact that metal nanoparticles naturally occur in various non-spherical shapes and their optical properties differ significantly due to changes in localized plasmon excitation. We demonstrate experimentally and support theoretically three-dimensional confinement of large gold nanoparticles in an optical trap based on very low numerical aperture optics. We showed theoretically that the unique properties of gold nanoprisms allow an increase of trapping force by an order of magnitude at certain aspect ratios. These results pave the way to spatial manipulation of plasmonic nanoparticles using an optical fibre, with interesting applications in biology and medicine. Nature Publishing Group 2015-01-29 /pmc/articles/PMC4309976/ /pubmed/25630432 http://dx.doi.org/10.1038/srep08106 Text en Copyright © 2015, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Brzobohatý, Oto
Šiler, Martin
Trojek, Jan
Chvátal, Lukáš
Karásek, Vítězslav
Paták, Aleš
Pokorná, Zuzana
Mika, Filip
Zemánek, Pavel
Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers
title Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers
title_full Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers
title_fullStr Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers
title_full_unstemmed Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers
title_short Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers
title_sort three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309976/
https://www.ncbi.nlm.nih.gov/pubmed/25630432
http://dx.doi.org/10.1038/srep08106
work_keys_str_mv AT brzobohatyoto threedimensionalopticaltrappingofaplasmonicnanoparticleusinglownumericalapertureopticaltweezers
AT silermartin threedimensionalopticaltrappingofaplasmonicnanoparticleusinglownumericalapertureopticaltweezers
AT trojekjan threedimensionalopticaltrappingofaplasmonicnanoparticleusinglownumericalapertureopticaltweezers
AT chvatallukas threedimensionalopticaltrappingofaplasmonicnanoparticleusinglownumericalapertureopticaltweezers
AT karasekvitezslav threedimensionalopticaltrappingofaplasmonicnanoparticleusinglownumericalapertureopticaltweezers
AT patakales threedimensionalopticaltrappingofaplasmonicnanoparticleusinglownumericalapertureopticaltweezers
AT pokornazuzana threedimensionalopticaltrappingofaplasmonicnanoparticleusinglownumericalapertureopticaltweezers
AT mikafilip threedimensionalopticaltrappingofaplasmonicnanoparticleusinglownumericalapertureopticaltweezers
AT zemanekpavel threedimensionalopticaltrappingofaplasmonicnanoparticleusinglownumericalapertureopticaltweezers