Cargando…
Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea
BACKGROUND: Brassica juncea var. Varuna is an economically important oilseed crop of family Brassicaceae which is vulnerable to abiotic stresses at specific stages in its life cycle. Till date no attempts have been made to elucidate genome-wide changes in its transcriptome against high temperature o...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310166/ https://www.ncbi.nlm.nih.gov/pubmed/25604693 http://dx.doi.org/10.1186/s12870-014-0405-1 |
_version_ | 1782354820923916288 |
---|---|
author | Bhardwaj, Ankur R Joshi, Gopal Kukreja, Bharti Malik, Vidhi Arora, Priyanka Pandey, Ritu Shukla, Rohit N Bankar, Kiran G Katiyar-Agarwal, Surekha Goel, Shailendra Jagannath, Arun Kumar, Amar Agarwal, Manu |
author_facet | Bhardwaj, Ankur R Joshi, Gopal Kukreja, Bharti Malik, Vidhi Arora, Priyanka Pandey, Ritu Shukla, Rohit N Bankar, Kiran G Katiyar-Agarwal, Surekha Goel, Shailendra Jagannath, Arun Kumar, Amar Agarwal, Manu |
author_sort | Bhardwaj, Ankur R |
collection | PubMed |
description | BACKGROUND: Brassica juncea var. Varuna is an economically important oilseed crop of family Brassicaceae which is vulnerable to abiotic stresses at specific stages in its life cycle. Till date no attempts have been made to elucidate genome-wide changes in its transcriptome against high temperature or drought stress. To gain global insights into genes, transcription factors and kinases regulated by these stresses and to explore information on coding transcripts that are associated with traits of agronomic importance, we utilized a combinatorial approach of next generation sequencing and de-novo assembly to discover B. juncea transcriptome associated with high temperature and drought stresses. RESULTS: We constructed and sequenced three transcriptome libraries namely Brassica control (BC), Brassica high temperature stress (BHS) and Brassica drought stress (BDS). More than 180 million purity filtered reads were generated which were processed through quality parameters and high quality reads were assembled de-novo using SOAPdenovo assembler. A total of 77750 unique transcripts were identified out of which 69,245 (89%) were annotated with high confidence. We established a subset of 19110 transcripts, which were differentially regulated by either high temperature and/or drought stress. Furthermore, 886 and 2834 transcripts that code for transcription factors and kinases, respectively, were also identified. Many of these were responsive to high temperature, drought or both stresses. Maximum number of up-regulated transcription factors in high temperature and drought stress belonged to heat shock factors (HSFs) and dehydration responsive element-binding (DREB) families, respectively. We also identified 239 metabolic pathways, which were perturbed during high temperature and drought treatments. Analysis of gene ontologies associated with differentially regulated genes forecasted their involvement in diverse biological processes. CONCLUSIONS: Our study provides first comprehensive discovery of B. juncea transcriptome under high temperature and drought stress conditions. Transcriptome resource generated in this study will enhance our understanding on the molecular mechanisms involved in defining the response of B. juncea against two important abiotic stresses. Furthermore this information would benefit designing of efficient crop improvement strategies for tolerance against conditions of high temperature regimes and water scarcity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-014-0405-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4310166 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43101662015-01-30 Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea Bhardwaj, Ankur R Joshi, Gopal Kukreja, Bharti Malik, Vidhi Arora, Priyanka Pandey, Ritu Shukla, Rohit N Bankar, Kiran G Katiyar-Agarwal, Surekha Goel, Shailendra Jagannath, Arun Kumar, Amar Agarwal, Manu BMC Plant Biol Research Article BACKGROUND: Brassica juncea var. Varuna is an economically important oilseed crop of family Brassicaceae which is vulnerable to abiotic stresses at specific stages in its life cycle. Till date no attempts have been made to elucidate genome-wide changes in its transcriptome against high temperature or drought stress. To gain global insights into genes, transcription factors and kinases regulated by these stresses and to explore information on coding transcripts that are associated with traits of agronomic importance, we utilized a combinatorial approach of next generation sequencing and de-novo assembly to discover B. juncea transcriptome associated with high temperature and drought stresses. RESULTS: We constructed and sequenced three transcriptome libraries namely Brassica control (BC), Brassica high temperature stress (BHS) and Brassica drought stress (BDS). More than 180 million purity filtered reads were generated which were processed through quality parameters and high quality reads were assembled de-novo using SOAPdenovo assembler. A total of 77750 unique transcripts were identified out of which 69,245 (89%) were annotated with high confidence. We established a subset of 19110 transcripts, which were differentially regulated by either high temperature and/or drought stress. Furthermore, 886 and 2834 transcripts that code for transcription factors and kinases, respectively, were also identified. Many of these were responsive to high temperature, drought or both stresses. Maximum number of up-regulated transcription factors in high temperature and drought stress belonged to heat shock factors (HSFs) and dehydration responsive element-binding (DREB) families, respectively. We also identified 239 metabolic pathways, which were perturbed during high temperature and drought treatments. Analysis of gene ontologies associated with differentially regulated genes forecasted their involvement in diverse biological processes. CONCLUSIONS: Our study provides first comprehensive discovery of B. juncea transcriptome under high temperature and drought stress conditions. Transcriptome resource generated in this study will enhance our understanding on the molecular mechanisms involved in defining the response of B. juncea against two important abiotic stresses. Furthermore this information would benefit designing of efficient crop improvement strategies for tolerance against conditions of high temperature regimes and water scarcity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-014-0405-1) contains supplementary material, which is available to authorized users. BioMed Central 2015-01-21 /pmc/articles/PMC4310166/ /pubmed/25604693 http://dx.doi.org/10.1186/s12870-014-0405-1 Text en © Bhardwaj et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Bhardwaj, Ankur R Joshi, Gopal Kukreja, Bharti Malik, Vidhi Arora, Priyanka Pandey, Ritu Shukla, Rohit N Bankar, Kiran G Katiyar-Agarwal, Surekha Goel, Shailendra Jagannath, Arun Kumar, Amar Agarwal, Manu Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea |
title | Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea |
title_full | Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea |
title_fullStr | Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea |
title_full_unstemmed | Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea |
title_short | Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea |
title_sort | global insights into high temperature and drought stress regulated genes by rna-seq in economically important oilseed crop brassica juncea |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310166/ https://www.ncbi.nlm.nih.gov/pubmed/25604693 http://dx.doi.org/10.1186/s12870-014-0405-1 |
work_keys_str_mv | AT bhardwajankurr globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea AT joshigopal globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea AT kukrejabharti globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea AT malikvidhi globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea AT arorapriyanka globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea AT pandeyritu globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea AT shuklarohitn globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea AT bankarkirang globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea AT katiyaragarwalsurekha globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea AT goelshailendra globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea AT jagannatharun globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea AT kumaramar globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea AT agarwalmanu globalinsightsintohightemperatureanddroughtstressregulatedgenesbyrnaseqineconomicallyimportantoilseedcropbrassicajuncea |