Cargando…
Whole genome sequence and comparative genomic analysis of multidrug-resistant Staphylococcus capitis subsp. urealyticus strain LNZR-1
BACKGROUND: Staphylococcus capitis is an emerging opportunistic pathogen of humans, and found as a colonizer of the human gut. Here, we report a case of S. capitis subsp. urealyticus infection. The strain LNZR-1 was isolated from the blood culture of a patient with sigmoid colon cancer. It was found...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310196/ https://www.ncbi.nlm.nih.gov/pubmed/25649186 http://dx.doi.org/10.1186/s13099-014-0045-x |
Sumario: | BACKGROUND: Staphylococcus capitis is an emerging opportunistic pathogen of humans, and found as a colonizer of the human gut. Here, we report a case of S. capitis subsp. urealyticus infection. The strain LNZR-1 was isolated from the blood culture of a patient with sigmoid colon cancer. It was found to be resistant to some important antibiotics, such as linezolid, a highly effective antimicrobial against clinically important Staphylococci pathogens. However, data on the genetic resistance mechanisms in S. capitis subsp. urealyticus are only sparsely available. RESULTS: The draft genome of S. capitis subsp. urealyticus strain LNZR-1 was sequenced by using next-generation sequencing technologies. Sequence data assembly revealed a genome size of 2,595,865 bp with a G + C content of 32.67%. Genome annotation revealed the presence of antibiotic resistance genes conferring resistance against some of the tested antibiotics as well as non-tested antibiotics. The genome also possesses a lot of genes that may be related to multidrug resistance. Whole genome comparison of the LNZR-1 with five other S. capitis strains showed that some functional regions are highly homologous between the six assemblies made herein. The LNZR-1 genome has high similarity with the genomes of the strains VCU116 and CR01, although some short stretches present in the genomes of strains VCU116 and CR01 were absent in the strain LNZR-1. CONCLUSIONS: The presence of a plethora of genes responsible for antibiotic resistance suggests that strain LNZR-1 could present a potential threat to human health. The comparative genomic analysis of S. capitis strains presented in this study is important for better understanding of multidrug resistance in S. capitis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13099-014-0045-x) contains supplementary material, which is available to authorized users. |
---|