Cargando…
Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture
Random Positioning Machines (RPMs) have been used since many years as a ground-based model to simulate microgravity. In this review we discuss several aspects of the RPM. Recent technological development has expanded the operative range of the RPM substantially. New possibilities of live cell imagin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310317/ https://www.ncbi.nlm.nih.gov/pubmed/25649075 http://dx.doi.org/10.1155/2015/971474 |
_version_ | 1782354850411970560 |
---|---|
author | Wuest, Simon L. Richard, Stéphane Kopp, Sascha Grimm, Daniela Egli, Marcel |
author_facet | Wuest, Simon L. Richard, Stéphane Kopp, Sascha Grimm, Daniela Egli, Marcel |
author_sort | Wuest, Simon L. |
collection | PubMed |
description | Random Positioning Machines (RPMs) have been used since many years as a ground-based model to simulate microgravity. In this review we discuss several aspects of the RPM. Recent technological development has expanded the operative range of the RPM substantially. New possibilities of live cell imaging and partial gravity simulations, for example, are of particular interest. For obtaining valuable and reliable results from RPM experiments, the appropriate use of the RPM is of utmost importance. The simulation of microgravity requires that the RPM's rotation is faster than the biological process under study, but not so fast that undesired side effects appear. It remains a legitimate question, however, whether the RPM can accurately and reliably simulate microgravity conditions comparable to real microgravity in space. We attempt to answer this question by mathematically analyzing the forces working on the samples while they are mounted on the operating RPM and by comparing data obtained under real microgravity in space and simulated microgravity on the RPM. In conclusion and after taking the mentioned constraints into consideration, we are convinced that simulated microgravity experiments on the RPM are a valid alternative for conducting examinations on the influence of the force of gravity in a fast and straightforward approach. |
format | Online Article Text |
id | pubmed-4310317 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-43103172015-02-03 Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture Wuest, Simon L. Richard, Stéphane Kopp, Sascha Grimm, Daniela Egli, Marcel Biomed Res Int Review Article Random Positioning Machines (RPMs) have been used since many years as a ground-based model to simulate microgravity. In this review we discuss several aspects of the RPM. Recent technological development has expanded the operative range of the RPM substantially. New possibilities of live cell imaging and partial gravity simulations, for example, are of particular interest. For obtaining valuable and reliable results from RPM experiments, the appropriate use of the RPM is of utmost importance. The simulation of microgravity requires that the RPM's rotation is faster than the biological process under study, but not so fast that undesired side effects appear. It remains a legitimate question, however, whether the RPM can accurately and reliably simulate microgravity conditions comparable to real microgravity in space. We attempt to answer this question by mathematically analyzing the forces working on the samples while they are mounted on the operating RPM and by comparing data obtained under real microgravity in space and simulated microgravity on the RPM. In conclusion and after taking the mentioned constraints into consideration, we are convinced that simulated microgravity experiments on the RPM are a valid alternative for conducting examinations on the influence of the force of gravity in a fast and straightforward approach. Hindawi Publishing Corporation 2015 2015-01-14 /pmc/articles/PMC4310317/ /pubmed/25649075 http://dx.doi.org/10.1155/2015/971474 Text en Copyright © 2015 Simon L. Wuest et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Wuest, Simon L. Richard, Stéphane Kopp, Sascha Grimm, Daniela Egli, Marcel Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture |
title | Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture |
title_full | Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture |
title_fullStr | Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture |
title_full_unstemmed | Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture |
title_short | Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture |
title_sort | simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310317/ https://www.ncbi.nlm.nih.gov/pubmed/25649075 http://dx.doi.org/10.1155/2015/971474 |
work_keys_str_mv | AT wuestsimonl simulatedmicrogravitycriticalreviewontheuseofrandompositioningmachinesformammaliancellculture AT richardstephane simulatedmicrogravitycriticalreviewontheuseofrandompositioningmachinesformammaliancellculture AT koppsascha simulatedmicrogravitycriticalreviewontheuseofrandompositioningmachinesformammaliancellculture AT grimmdaniela simulatedmicrogravitycriticalreviewontheuseofrandompositioningmachinesformammaliancellculture AT eglimarcel simulatedmicrogravitycriticalreviewontheuseofrandompositioningmachinesformammaliancellculture |