Cargando…

Impact of Heme and Heme Degradation Products on Vascular Diameter in Mouse Visual Cortex

BACKGROUND: Delayed cerebral vasospasm is the most common cause of mortality and severe neurological impairment in patients who survive subarachnoid hemorrhage. Despite improvements in the field of diagnostic imaging, options for prevention and medical treatment—primarily with the calcium channel an...

Descripción completa

Detalles Bibliográficos
Autores principales: Joerk, Alexander, Seidel, Raphael Andreas, Walter, Sebastian Gottfried, Wiegand, Anne, Kahnes, Marcel, Klopfleisch, Maurice, Kirmse, Knut, Pohnert, Georg, Westerhausen, Matthias, Witte, Otto Wilhelm, Holthoff, Knut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310418/
https://www.ncbi.nlm.nih.gov/pubmed/25169792
http://dx.doi.org/10.1161/JAHA.114.001220
Descripción
Sumario:BACKGROUND: Delayed cerebral vasospasm is the most common cause of mortality and severe neurological impairment in patients who survive subarachnoid hemorrhage. Despite improvements in the field of diagnostic imaging, options for prevention and medical treatment—primarily with the calcium channel antagonist nimodipine or hemodynamic manipulations—are insufficient. Previous studies have suggested that heme and bilirubin oxidation end products, originating from degraded hemoglobin around ruptured blood vessels, are involved in the development of vasospasm by inhibiting large conductance BK(C)(a) potassium channels in vascular smooth muscle cells. In this study, we identify individual heme degradation products regulating arteriolar diameter in dependence of BK(C)(a) channel activity. METHODS AND RESULTS: Using differential interference contrast video microscopy in acute brain slices, we determined diameter changes of intracerebral arterioles in mouse visual cortex. In preconstricted vessels, the specific BK(C)(a) channel blockers paxilline and iberiotoxin as well as iron‐containing hemin caused vasoconstriction. In addition, the bilirubin oxidation end product Z‐BOX A showed a stronger vasoconstrictive potency than its regio‐isomer Z‐BOX B. Importantly, Z‐BOX A had the same vasoconstrictive effect, independent of its origin from oxidative degradation or chemical synthesis. Finally, in slices of Slo1‐deficient knockout mice, paxilline and Z‐BOX A remained ineffective in changing arteriole diameter. CONCLUSIONS: We identified individual components of the oxidative bilirubin degradation that led to vasoconstriction of cerebral arterioles. The vasoconstrictive effect of Z‐BOX A and Z‐BOX B was mediated by BK(C)(a) channel activity that might represent a signaling pathway in the occurrence of delayed cerebral vasospasm in subarachnoid hemorrhage patients.