Cargando…

The Diophantine Equation 8(x) + p (y) = z (2)

Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ±3(mod  8), then the equation 8(x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod  8), then the equation has only the solutions (p, x, y, z) = (2(q) − 1, (...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Lan, Li, Xiaoxue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310497/
https://www.ncbi.nlm.nih.gov/pubmed/25654128
http://dx.doi.org/10.1155/2015/306590
Descripción
Sumario:Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ±3(mod  8), then the equation 8(x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod  8), then the equation has only the solutions (p, x, y, z) = (2(q) − 1, (1/3)(q + 2), 2, 2(q) + 1), where q is an odd prime with q ≡ 1(mod  3); (iii) if p ≡ 1(mod  8) and p ≠ 17, then the equation has at most two positive integer solutions (x, y, z).