Cargando…
The Diophantine Equation 8(x) + p (y) = z (2)
Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ±3(mod 8), then the equation 8(x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod 8), then the equation has only the solutions (p, x, y, z) = (2(q) − 1, (...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310497/ https://www.ncbi.nlm.nih.gov/pubmed/25654128 http://dx.doi.org/10.1155/2015/306590 |
_version_ | 1782354884335501312 |
---|---|
author | Qi, Lan Li, Xiaoxue |
author_facet | Qi, Lan Li, Xiaoxue |
author_sort | Qi, Lan |
collection | PubMed |
description | Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ±3(mod 8), then the equation 8(x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod 8), then the equation has only the solutions (p, x, y, z) = (2(q) − 1, (1/3)(q + 2), 2, 2(q) + 1), where q is an odd prime with q ≡ 1(mod 3); (iii) if p ≡ 1(mod 8) and p ≠ 17, then the equation has at most two positive integer solutions (x, y, z). |
format | Online Article Text |
id | pubmed-4310497 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-43104972015-02-04 The Diophantine Equation 8(x) + p (y) = z (2) Qi, Lan Li, Xiaoxue ScientificWorldJournal Research Article Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ±3(mod 8), then the equation 8(x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod 8), then the equation has only the solutions (p, x, y, z) = (2(q) − 1, (1/3)(q + 2), 2, 2(q) + 1), where q is an odd prime with q ≡ 1(mod 3); (iii) if p ≡ 1(mod 8) and p ≠ 17, then the equation has at most two positive integer solutions (x, y, z). Hindawi Publishing Corporation 2015 2015-01-14 /pmc/articles/PMC4310497/ /pubmed/25654128 http://dx.doi.org/10.1155/2015/306590 Text en Copyright © 2015 L. Qi and X. Li. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Qi, Lan Li, Xiaoxue The Diophantine Equation 8(x) + p (y) = z (2) |
title | The Diophantine Equation 8(x) + p
(y) = z
(2)
|
title_full | The Diophantine Equation 8(x) + p
(y) = z
(2)
|
title_fullStr | The Diophantine Equation 8(x) + p
(y) = z
(2)
|
title_full_unstemmed | The Diophantine Equation 8(x) + p
(y) = z
(2)
|
title_short | The Diophantine Equation 8(x) + p
(y) = z
(2)
|
title_sort | diophantine equation 8(x) + p
(y) = z
(2) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310497/ https://www.ncbi.nlm.nih.gov/pubmed/25654128 http://dx.doi.org/10.1155/2015/306590 |
work_keys_str_mv | AT qilan thediophantineequation8xpyz2 AT lixiaoxue thediophantineequation8xpyz2 AT qilan diophantineequation8xpyz2 AT lixiaoxue diophantineequation8xpyz2 |