Cargando…

The Diophantine Equation 8(x) + p (y) = z (2)

Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ±3(mod  8), then the equation 8(x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod  8), then the equation has only the solutions (p, x, y, z) = (2(q) − 1, (...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Lan, Li, Xiaoxue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310497/
https://www.ncbi.nlm.nih.gov/pubmed/25654128
http://dx.doi.org/10.1155/2015/306590
_version_ 1782354884335501312
author Qi, Lan
Li, Xiaoxue
author_facet Qi, Lan
Li, Xiaoxue
author_sort Qi, Lan
collection PubMed
description Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ±3(mod  8), then the equation 8(x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod  8), then the equation has only the solutions (p, x, y, z) = (2(q) − 1, (1/3)(q + 2), 2, 2(q) + 1), where q is an odd prime with q ≡ 1(mod  3); (iii) if p ≡ 1(mod  8) and p ≠ 17, then the equation has at most two positive integer solutions (x, y, z).
format Online
Article
Text
id pubmed-4310497
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-43104972015-02-04 The Diophantine Equation 8(x) + p (y) = z (2) Qi, Lan Li, Xiaoxue ScientificWorldJournal Research Article Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ±3(mod  8), then the equation 8(x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod  8), then the equation has only the solutions (p, x, y, z) = (2(q) − 1, (1/3)(q + 2), 2, 2(q) + 1), where q is an odd prime with q ≡ 1(mod  3); (iii) if p ≡ 1(mod  8) and p ≠ 17, then the equation has at most two positive integer solutions (x, y, z). Hindawi Publishing Corporation 2015 2015-01-14 /pmc/articles/PMC4310497/ /pubmed/25654128 http://dx.doi.org/10.1155/2015/306590 Text en Copyright © 2015 L. Qi and X. Li. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Qi, Lan
Li, Xiaoxue
The Diophantine Equation 8(x) + p (y) = z (2)
title The Diophantine Equation 8(x) + p (y) = z (2)
title_full The Diophantine Equation 8(x) + p (y) = z (2)
title_fullStr The Diophantine Equation 8(x) + p (y) = z (2)
title_full_unstemmed The Diophantine Equation 8(x) + p (y) = z (2)
title_short The Diophantine Equation 8(x) + p (y) = z (2)
title_sort diophantine equation 8(x) + p (y) = z (2)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310497/
https://www.ncbi.nlm.nih.gov/pubmed/25654128
http://dx.doi.org/10.1155/2015/306590
work_keys_str_mv AT qilan thediophantineequation8xpyz2
AT lixiaoxue thediophantineequation8xpyz2
AT qilan diophantineequation8xpyz2
AT lixiaoxue diophantineequation8xpyz2