Cargando…
The Diophantine Equation 8(x) + p (y) = z (2)
Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ±3(mod 8), then the equation 8(x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod 8), then the equation has only the solutions (p, x, y, z) = (2(q) − 1, (...
Autores principales: | Qi, Lan, Li, Xiaoxue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310497/ https://www.ncbi.nlm.nih.gov/pubmed/25654128 http://dx.doi.org/10.1155/2015/306590 |
Ejemplares similares
-
The Exponential Diophantine Equation 2(x) + b
(y) = c
(z)
por: Yu, Yahui, et al.
Publicado: (2014) -
Diophantine approximations and Diophantine equations
por: Schmidt, Wolfgang M
Publicado: (1991) -
Diophantine equations
por: Mordell, L J
Publicado: (1969) -
Analytic methods for diophantine equations and diophantine inequalities
por: Davenport, H
Publicado: (2005) -
Quadratic Diophantine equations
por: Andreescu, Titu, et al.
Publicado: (2015)