Cargando…
Automated Classification to Predict the Progression of Alzheimer's Disease Using Whole-Brain Volumetry and DTI
OBJECTIVE: This study proposes an automated diagnostic method to classify patients with Alzheimer's disease (AD) of degenerative etiology using magnetic resonance imaging (MRI) markers. METHODS: Twenty-seven patients with subjective memory impairment (SMI), 18 patients with mild cognitive impai...
Autores principales: | Jung, Won Beom, Lee, Young Min, Kim, Young Hoon, Mun, Chi-Woong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Neuropsychiatric Association
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310927/ https://www.ncbi.nlm.nih.gov/pubmed/25670951 http://dx.doi.org/10.4306/pi.2015.12.1.92 |
Ejemplares similares
-
DTI and MR Volumetry of Hippocampus-PC/PCC Circuit: In Search of Early Micro- and Macrostructural Signs of Alzheimers's Disease
por: Palesi, F., et al.
Publicado: (2012) -
Combination of automated brain volumetry on MRI and quantitative tau deposition on THK-5351 PET to support diagnosis of Alzheimer’s disease
por: Kim, Minjae, et al.
Publicado: (2021) -
Progressive disease in glioblastoma: Benefits and limitations of semi-automated volumetry
por: Huber, Thomas, et al.
Publicado: (2017) -
Whole‐brain DTI parameters associated with tau protein and hippocampal volume in Alzheimer's disease
por: Magalhães, Thamires Naela Cardoso, et al.
Publicado: (2023) -
Potential influence of automated volumetry on treatment response classifications in lung cancer lesions
por: Akbari, Kaveh, et al.
Publicado: (2014)