Cargando…
The dynamic conformational landscape of γ-secretase
The structure and function of the γ-secretase proteases are of great interest because of their crucial roles in cellular and disease processes. We established a novel purification protocol for the γ-secretase complex that involves a conformation- and complex-specific nanobody, yielding highly pure a...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311135/ https://www.ncbi.nlm.nih.gov/pubmed/25501811 http://dx.doi.org/10.1242/jcs.164384 |
Sumario: | The structure and function of the γ-secretase proteases are of great interest because of their crucial roles in cellular and disease processes. We established a novel purification protocol for the γ-secretase complex that involves a conformation- and complex-specific nanobody, yielding highly pure and active enzyme. Using single particle electron microscopy, we analyzed the γ-secretase structure and its conformational variability. Under steady-state conditions, the complex adopts three major conformations, which differ in overall compactness and relative position of the nicastrin ectodomain. Occupancy of the active or substrate-binding sites by inhibitors differentially stabilizes subpopulations of particles with compact conformations, whereas a mutation linked to familial Alzheimer disease results in enrichment of extended-conformation complexes with increased flexibility. Our study presents the γ-secretase complex as a dynamic population of interconverting conformations, involving rearrangements at the nanometer scale and a high level of structural interdependence between subunits. The fact that protease inhibition or clinical mutations, which affect amyloid β (Aβ) generation, enrich for particular subpopulations of conformers indicates the functional relevance of the observed dynamic changes, which are likely to be instrumental for highly allosteric behavior of the enzyme. |
---|