Cargando…
Gaussian mixture models and semantic gating improve reconstructions from human brain activity
Better acquisition protocols and analysis techniques are making it possible to use fMRI to obtain highly detailed visualizations of brain processes. In particular we focus on the reconstruction of natural images from BOLD responses in visual cortex. We expand our linear Gaussian framework for percep...
Autores principales: | Schoenmakers, Sanne, Güçlü, Umut, van Gerven, Marcel, Heskes, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311641/ https://www.ncbi.nlm.nih.gov/pubmed/25688202 http://dx.doi.org/10.3389/fncom.2014.00173 |
Ejemplares similares
-
Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks
por: Güçlü, Umut, et al.
Publicado: (2017) -
Brain2Pix: Fully convolutional naturalistic video frame reconstruction from brain activity
por: Le, Lynn, et al.
Publicado: (2022) -
Unsupervised Feature Learning Improves Prediction of Human Brain Activity in Response to Natural Images
por: Güçlü, Umut, et al.
Publicado: (2014) -
A partially nested cortical hierarchy of neural states underlies event segmentation in the human brain
por: Geerligs, Linda, et al.
Publicado: (2022) -
Quantifying uncertainty in brain network measures using Bayesian connectomics
por: Janssen, Ronald J., et al.
Publicado: (2014)