Cargando…
Probabilistic Clustering of the Human Connectome Identifies Communities and Hubs
A fundamental assumption in neuroscience is that brain function is constrained by its structural properties. This motivates the idea that the brain can be parcellated into functionally coherent regions based on anatomical connectivity patterns that capture how different areas are interconnected. Sev...
Autores principales: | Hinne, Max, Ekman, Matthias, Janssen, Ronald J., Heskes, Tom, van Gerven, Marcel A. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4311978/ https://www.ncbi.nlm.nih.gov/pubmed/25635390 http://dx.doi.org/10.1371/journal.pone.0117179 |
Ejemplares similares
-
Quantifying uncertainty in brain network measures using Bayesian connectomics
por: Janssen, Ronald J., et al.
Publicado: (2014) -
Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates
por: Hinne, Max, et al.
Publicado: (2015) -
The missing link: Predicting connectomes from noisy and partially observed tract tracing data
por: Hinne, Max, et al.
Publicado: (2017) -
Correction: The missing link: Predicting connectomes from noisy and partially observed tract tracing data
por: Hinne, Max, et al.
Publicado: (2017) -
Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome
por: Schmidt, Ruben, et al.
Publicado: (2015)