Cargando…

Osteocyte-Derived Insulin-Like Growth Factor I Is Not Essential for the Bone Repletion Response in Mice

The present study sought to evaluate the functional role of osteocyte-derived IGF-I in the bone repletion process by determining whether deficient expression of Igf1 in osteocytes would impair the bone repletion response to one week of dietary calcium repletion after two weeks of dietary calcium dep...

Descripción completa

Detalles Bibliográficos
Autores principales: Lau, Kin-Hing William, Baylink, David J., Sheng, Matilda H.-C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312049/
https://www.ncbi.nlm.nih.gov/pubmed/25635763
http://dx.doi.org/10.1371/journal.pone.0115897
_version_ 1782355085358006272
author Lau, Kin-Hing William
Baylink, David J.
Sheng, Matilda H.-C.
author_facet Lau, Kin-Hing William
Baylink, David J.
Sheng, Matilda H.-C.
author_sort Lau, Kin-Hing William
collection PubMed
description The present study sought to evaluate the functional role of osteocyte-derived IGF-I in the bone repletion process by determining whether deficient expression of Igf1 in osteocytes would impair the bone repletion response to one week of dietary calcium repletion after two weeks of dietary calcium deprivation. As expected, the two-week dietary calcium depletion led to hypocalcemia, secondary hyperparathyroidism, and increases in bone resorption and bone loss in both Igf1 osteocyte conditional knockout (cKO) mutants and WT control mice. Thus, conditional disruption of Igf1 in osteocytes did not impair the calcium depletion-induced bone resorption. After one week of calcium repletion, both cKO mutants and WT littermates showed an increase in endosteal bone formation attended by the reduction in osteoclast number, indicating that deficient Igf1 expression in osteocytes also did not have deleterious effects on the bone repletion response. The lack of an effect of deficient osteocyte-derived IGF-I expression on bone repletion is unexpected since previous studies show that these Igf1 osteocyte cKO mice exhibited impaired developmental growth and displayed complete resistance to bone anabolic effects of loading. These studies suggest that there is a dichotomy between the mechanisms necessary for anabolic responses to mechanical loading and the regulatory hormonal and anabolic skeletal repletion following low dietary calcium challenge. In conclusion, to our knowledge this study has demonstrated for the first time that osteocyte-derived IGF-I, which is essential for anabolic bone response to mechanical loading, is not a key regulatory factor for bone repletion after a low calcium challenge.
format Online
Article
Text
id pubmed-4312049
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-43120492015-02-13 Osteocyte-Derived Insulin-Like Growth Factor I Is Not Essential for the Bone Repletion Response in Mice Lau, Kin-Hing William Baylink, David J. Sheng, Matilda H.-C. PLoS One Research Article The present study sought to evaluate the functional role of osteocyte-derived IGF-I in the bone repletion process by determining whether deficient expression of Igf1 in osteocytes would impair the bone repletion response to one week of dietary calcium repletion after two weeks of dietary calcium deprivation. As expected, the two-week dietary calcium depletion led to hypocalcemia, secondary hyperparathyroidism, and increases in bone resorption and bone loss in both Igf1 osteocyte conditional knockout (cKO) mutants and WT control mice. Thus, conditional disruption of Igf1 in osteocytes did not impair the calcium depletion-induced bone resorption. After one week of calcium repletion, both cKO mutants and WT littermates showed an increase in endosteal bone formation attended by the reduction in osteoclast number, indicating that deficient Igf1 expression in osteocytes also did not have deleterious effects on the bone repletion response. The lack of an effect of deficient osteocyte-derived IGF-I expression on bone repletion is unexpected since previous studies show that these Igf1 osteocyte cKO mice exhibited impaired developmental growth and displayed complete resistance to bone anabolic effects of loading. These studies suggest that there is a dichotomy between the mechanisms necessary for anabolic responses to mechanical loading and the regulatory hormonal and anabolic skeletal repletion following low dietary calcium challenge. In conclusion, to our knowledge this study has demonstrated for the first time that osteocyte-derived IGF-I, which is essential for anabolic bone response to mechanical loading, is not a key regulatory factor for bone repletion after a low calcium challenge. Public Library of Science 2015-01-30 /pmc/articles/PMC4312049/ /pubmed/25635763 http://dx.doi.org/10.1371/journal.pone.0115897 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Research Article
Lau, Kin-Hing William
Baylink, David J.
Sheng, Matilda H.-C.
Osteocyte-Derived Insulin-Like Growth Factor I Is Not Essential for the Bone Repletion Response in Mice
title Osteocyte-Derived Insulin-Like Growth Factor I Is Not Essential for the Bone Repletion Response in Mice
title_full Osteocyte-Derived Insulin-Like Growth Factor I Is Not Essential for the Bone Repletion Response in Mice
title_fullStr Osteocyte-Derived Insulin-Like Growth Factor I Is Not Essential for the Bone Repletion Response in Mice
title_full_unstemmed Osteocyte-Derived Insulin-Like Growth Factor I Is Not Essential for the Bone Repletion Response in Mice
title_short Osteocyte-Derived Insulin-Like Growth Factor I Is Not Essential for the Bone Repletion Response in Mice
title_sort osteocyte-derived insulin-like growth factor i is not essential for the bone repletion response in mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312049/
https://www.ncbi.nlm.nih.gov/pubmed/25635763
http://dx.doi.org/10.1371/journal.pone.0115897
work_keys_str_mv AT laukinhingwilliam osteocytederivedinsulinlikegrowthfactoriisnotessentialforthebonerepletionresponseinmice
AT baylinkdavidj osteocytederivedinsulinlikegrowthfactoriisnotessentialforthebonerepletionresponseinmice
AT shengmatildahc osteocytederivedinsulinlikegrowthfactoriisnotessentialforthebonerepletionresponseinmice