Cargando…
The Mitotic Checkpoint Complex binds a second CDC20 to inhibit active APC/C
The Spindle Assembly Checkpoint (SAC) maintains genomic stability by delaying chromosome segregation until the last chromosome has attached to the mitotic spindle. The SAC prevents the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase from recognising Cyclin B and securin by catalysing t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312099/ https://www.ncbi.nlm.nih.gov/pubmed/25383541 http://dx.doi.org/10.1038/nature13911 |
_version_ | 1782355097249906688 |
---|---|
author | Izawa, Daisuke Pines, Jonathon |
author_facet | Izawa, Daisuke Pines, Jonathon |
author_sort | Izawa, Daisuke |
collection | PubMed |
description | The Spindle Assembly Checkpoint (SAC) maintains genomic stability by delaying chromosome segregation until the last chromosome has attached to the mitotic spindle. The SAC prevents the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase from recognising Cyclin B and securin by catalysing the incorporation of the APC/C co-activator, CDC20, into a complex called the Mitotic Checkpoint Complex (MCC). The SAC works through unattached kinetochores generating a diffusible ‘wait anaphase’ signal(1,2) that inhibits the APC/C in the cytoplasm, but the nature of this signal remains a key unsolved problem. Moreover, the SAC and the APC/C are highly responsive to each other: the APC/C quickly targets Cyclin B and securin once all the chromosomes attach in metaphase, but is rapidly inhibited should kinetochore attachment be perturbed(3,4). How this is achieved is also unknown. Here, we show that the MCC can inhibit a second CDC20 that has already bound and activated the APC/C. We show how the MCC inhibits active APC/C and that this is essential for the SAC. Moreover, this mechanism can prevent anaphase in the absence of kinetochore signalling. Thus, we propose that the diffusible ‘wait anaphase’ signal could be the MCC itself, and explain how reactivating the SAC can rapidly inhibit active APC/C. |
format | Online Article Text |
id | pubmed-4312099 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
record_format | MEDLINE/PubMed |
spelling | pubmed-43120992015-07-29 The Mitotic Checkpoint Complex binds a second CDC20 to inhibit active APC/C Izawa, Daisuke Pines, Jonathon Nature Article The Spindle Assembly Checkpoint (SAC) maintains genomic stability by delaying chromosome segregation until the last chromosome has attached to the mitotic spindle. The SAC prevents the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase from recognising Cyclin B and securin by catalysing the incorporation of the APC/C co-activator, CDC20, into a complex called the Mitotic Checkpoint Complex (MCC). The SAC works through unattached kinetochores generating a diffusible ‘wait anaphase’ signal(1,2) that inhibits the APC/C in the cytoplasm, but the nature of this signal remains a key unsolved problem. Moreover, the SAC and the APC/C are highly responsive to each other: the APC/C quickly targets Cyclin B and securin once all the chromosomes attach in metaphase, but is rapidly inhibited should kinetochore attachment be perturbed(3,4). How this is achieved is also unknown. Here, we show that the MCC can inhibit a second CDC20 that has already bound and activated the APC/C. We show how the MCC inhibits active APC/C and that this is essential for the SAC. Moreover, this mechanism can prevent anaphase in the absence of kinetochore signalling. Thus, we propose that the diffusible ‘wait anaphase’ signal could be the MCC itself, and explain how reactivating the SAC can rapidly inhibit active APC/C. 2014-11-12 2015-01-29 /pmc/articles/PMC4312099/ /pubmed/25383541 http://dx.doi.org/10.1038/nature13911 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Izawa, Daisuke Pines, Jonathon The Mitotic Checkpoint Complex binds a second CDC20 to inhibit active APC/C |
title | The Mitotic Checkpoint Complex binds a second CDC20 to inhibit active APC/C |
title_full | The Mitotic Checkpoint Complex binds a second CDC20 to inhibit active APC/C |
title_fullStr | The Mitotic Checkpoint Complex binds a second CDC20 to inhibit active APC/C |
title_full_unstemmed | The Mitotic Checkpoint Complex binds a second CDC20 to inhibit active APC/C |
title_short | The Mitotic Checkpoint Complex binds a second CDC20 to inhibit active APC/C |
title_sort | mitotic checkpoint complex binds a second cdc20 to inhibit active apc/c |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312099/ https://www.ncbi.nlm.nih.gov/pubmed/25383541 http://dx.doi.org/10.1038/nature13911 |
work_keys_str_mv | AT izawadaisuke themitoticcheckpointcomplexbindsasecondcdc20toinhibitactiveapcc AT pinesjonathon themitoticcheckpointcomplexbindsasecondcdc20toinhibitactiveapcc AT izawadaisuke mitoticcheckpointcomplexbindsasecondcdc20toinhibitactiveapcc AT pinesjonathon mitoticcheckpointcomplexbindsasecondcdc20toinhibitactiveapcc |