Cargando…

The enhanced anticoagulation for graphene induced by COOH(+) ion implantation

Graphene may have attractive properties for some biomedical applications, but its potential adverse biological effects, in particular, possible modulation when it comes in contact with blood, require further investigation. Little is known about the influence of exposure to COOH(+)-implanted graphene...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiaoqi, Cao, Ye, Zhao, Mengli, Deng, Jianhua, Li, Xifei, Li, Dejun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312311/
https://www.ncbi.nlm.nih.gov/pubmed/25852312
http://dx.doi.org/10.1186/s11671-014-0705-2
Descripción
Sumario:Graphene may have attractive properties for some biomedical applications, but its potential adverse biological effects, in particular, possible modulation when it comes in contact with blood, require further investigation. Little is known about the influence of exposure to COOH(+)-implanted graphene (COOH(+)/graphene) interacting with red blood cells and platelets. In this paper, COOH(+)/graphene was prepared by modified Hummers' method and implanted by COOH(+) ions. The structure and surface chemical and physical properties of COOH(+)/graphene were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle measurement. Systematic evaluation of anticoagulation, including in vitro platelet adhesion assays and hemolytic assays, proved that COOH(+)/graphene has significant anticoagulation. In addition, at the dose of 5 × 10(17) ions/cm(2), COOH(+)/graphene responded best on platelet adhesion, aggregation, and platelet activation.