Cargando…
Atrazine in sub-acute exposure results in sperm DNA disintegrity and nuclear immaturity in rats
This study was designed to evaluate the detrimental effect of atrazine (ATR) on germinal epitheliums (GE) cytoplasmic carbohydrate (CH) and unsaturated fatty acids (UFA) ratio and to clarify the effect of ATR on serum levels of FSH, LH, testosterone and inhibin-B (INH-B). The impact of ATR exposure...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Urmia University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312814/ https://www.ncbi.nlm.nih.gov/pubmed/25653741 |
Sumario: | This study was designed to evaluate the detrimental effect of atrazine (ATR) on germinal epitheliums (GE) cytoplasmic carbohydrate (CH) and unsaturated fatty acids (UFA) ratio and to clarify the effect of ATR on serum levels of FSH, LH, testosterone and inhibin-B (INH-B). The impact of ATR exposure on total antioxidant capacity (TAC), sperm DNA packing and integrity were also investigated. Seventy two Wistar rats were used. The rats in control group received vehicle and the animals in test groups received 100, 200 and 300 mg kg(-1) BW of ATR orally on daily bases for 12, 24 and 48 days. In ATR-received groups the spermatogenesis cell were presented with dense reactive sites for lipidophilic staining associated with faint cytoplasmic CH accumulation. Dissociated germinal epithelium, negative tubular and repopulation indexes were manifested. The serum levels of testosterone, FSH, LH and INH-B decreased by 85% after 48 days exposure to high dose of ATR. TAC was reduced in a time- and dose-dependent manner. The sperm DNA damage was marked in animals which exposed to high dose of ATR (72.50 ± 2.25%) and the percentage of nuclear immature sperm increased up to 83.40 ± 0.89%. In conclusion, ATR not only induced its detrimental effect on the endocrine function of the testes and pituitary gland but also affected the cytoplasmic CH ratio and consequently leads to inadequate energy supplement in spermatogenesis cells. Therefore the imbalanced oxidative stress occurs in testicular tissue, which in turn enhances the sperm DNA disintegrity and nuclear immaturity. |
---|