Cargando…

Genetic instability is prevented by Mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: Homologous recombination tolerates replicative stress by Mrc1-regulated replication and repair activities operating at S and G2 in distinct subnuclear compartments

Homologous recombination (HR) is required to protect and restart stressed replication forks. Paradoxically, the Mrc1 branch of the S phase checkpoints, which is activated by replicative stress, prevents HR repair at breaks and arrested forks. Indeed, the mechanisms underlying HR can threaten genome...

Descripción completa

Detalles Bibliográficos
Autor principal: Prado, Félix
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312893/
https://www.ncbi.nlm.nih.gov/pubmed/24615940
http://dx.doi.org/10.1002/bies.201300161
Descripción
Sumario:Homologous recombination (HR) is required to protect and restart stressed replication forks. Paradoxically, the Mrc1 branch of the S phase checkpoints, which is activated by replicative stress, prevents HR repair at breaks and arrested forks. Indeed, the mechanisms underlying HR can threaten genome integrity if not properly regulated. Thus, understanding how cells avoid genetic instability associated with replicative stress, a hallmark of cancer, is still a challenge. Here I discuss recent results that support a model by which HR responds to replication stress through replicative and repair activities that operate at different stages of the cell cycle (S and G2, respectively) and in distinct subnuclear structures. Remarkably, the replication checkpoint appears to control this scenario by inhibiting the assembly of HR repair centers at stressed forks during S phase, thereby avoiding genetic instability.