Cargando…
Genetic instability is prevented by Mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: Homologous recombination tolerates replicative stress by Mrc1-regulated replication and repair activities operating at S and G2 in distinct subnuclear compartments
Homologous recombination (HR) is required to protect and restart stressed replication forks. Paradoxically, the Mrc1 branch of the S phase checkpoints, which is activated by replicative stress, prevents HR repair at breaks and arrested forks. Indeed, the mechanisms underlying HR can threaten genome...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312893/ https://www.ncbi.nlm.nih.gov/pubmed/24615940 http://dx.doi.org/10.1002/bies.201300161 |
_version_ | 1782355172296491008 |
---|---|
author | Prado, Félix |
author_facet | Prado, Félix |
author_sort | Prado, Félix |
collection | PubMed |
description | Homologous recombination (HR) is required to protect and restart stressed replication forks. Paradoxically, the Mrc1 branch of the S phase checkpoints, which is activated by replicative stress, prevents HR repair at breaks and arrested forks. Indeed, the mechanisms underlying HR can threaten genome integrity if not properly regulated. Thus, understanding how cells avoid genetic instability associated with replicative stress, a hallmark of cancer, is still a challenge. Here I discuss recent results that support a model by which HR responds to replication stress through replicative and repair activities that operate at different stages of the cell cycle (S and G2, respectively) and in distinct subnuclear structures. Remarkably, the replication checkpoint appears to control this scenario by inhibiting the assembly of HR repair centers at stressed forks during S phase, thereby avoiding genetic instability. |
format | Online Article Text |
id | pubmed-4312893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-43128932015-02-10 Genetic instability is prevented by Mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: Homologous recombination tolerates replicative stress by Mrc1-regulated replication and repair activities operating at S and G2 in distinct subnuclear compartments Prado, Félix Bioessays Insights & Perspectives Homologous recombination (HR) is required to protect and restart stressed replication forks. Paradoxically, the Mrc1 branch of the S phase checkpoints, which is activated by replicative stress, prevents HR repair at breaks and arrested forks. Indeed, the mechanisms underlying HR can threaten genome integrity if not properly regulated. Thus, understanding how cells avoid genetic instability associated with replicative stress, a hallmark of cancer, is still a challenge. Here I discuss recent results that support a model by which HR responds to replication stress through replicative and repair activities that operate at different stages of the cell cycle (S and G2, respectively) and in distinct subnuclear structures. Remarkably, the replication checkpoint appears to control this scenario by inhibiting the assembly of HR repair centers at stressed forks during S phase, thereby avoiding genetic instability. BlackWell Publishing Ltd 2014-05 2014-02-26 /pmc/articles/PMC4312893/ /pubmed/24615940 http://dx.doi.org/10.1002/bies.201300161 Text en © 2014 The Author. Bioessays published by WILEY Periodicals, Inc. http://creativecommons.org/licenses/by/3.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Insights & Perspectives Prado, Félix Genetic instability is prevented by Mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: Homologous recombination tolerates replicative stress by Mrc1-regulated replication and repair activities operating at S and G2 in distinct subnuclear compartments |
title | Genetic instability is prevented by Mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: Homologous recombination tolerates replicative stress by Mrc1-regulated replication and repair activities operating at S and G2 in distinct subnuclear compartments |
title_full | Genetic instability is prevented by Mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: Homologous recombination tolerates replicative stress by Mrc1-regulated replication and repair activities operating at S and G2 in distinct subnuclear compartments |
title_fullStr | Genetic instability is prevented by Mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: Homologous recombination tolerates replicative stress by Mrc1-regulated replication and repair activities operating at S and G2 in distinct subnuclear compartments |
title_full_unstemmed | Genetic instability is prevented by Mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: Homologous recombination tolerates replicative stress by Mrc1-regulated replication and repair activities operating at S and G2 in distinct subnuclear compartments |
title_short | Genetic instability is prevented by Mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: Homologous recombination tolerates replicative stress by Mrc1-regulated replication and repair activities operating at S and G2 in distinct subnuclear compartments |
title_sort | genetic instability is prevented by mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: homologous recombination tolerates replicative stress by mrc1-regulated replication and repair activities operating at s and g2 in distinct subnuclear compartments |
topic | Insights & Perspectives |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312893/ https://www.ncbi.nlm.nih.gov/pubmed/24615940 http://dx.doi.org/10.1002/bies.201300161 |
work_keys_str_mv | AT pradofelix geneticinstabilityispreventedbymrc1dependentspatiotemporalseparationofreplicativeandrepairactivitiesofhomologousrecombinationhomologousrecombinationtoleratesreplicativestressbymrc1regulatedreplicationandrepairactivitiesoperatingatsandg2indistinctsubnuclea |