Cargando…
Functional Studies of Tyrosine Hydroxylase Missense Variants Reveal Distinct Patterns of Molecular Defects in Dopa-Responsive Dystonia
Congenital tyrosine hydroxylase deficiency (THD) is found in autosomal-recessive Dopa-responsive dystonia and related neurological syndromes. The clinical manifestations of THD are variable, ranging from early-onset lethal disease to mild Parkinson disease-like symptoms appearing in adolescence. Unt...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312968/ https://www.ncbi.nlm.nih.gov/pubmed/24753243 http://dx.doi.org/10.1002/humu.22565 |
_version_ | 1782355186150277120 |
---|---|
author | Fossbakk, Agnete Kleppe, Rune Knappskog, Per M Martinez, Aurora Haavik, Jan |
author_facet | Fossbakk, Agnete Kleppe, Rune Knappskog, Per M Martinez, Aurora Haavik, Jan |
author_sort | Fossbakk, Agnete |
collection | PubMed |
description | Congenital tyrosine hydroxylase deficiency (THD) is found in autosomal-recessive Dopa-responsive dystonia and related neurological syndromes. The clinical manifestations of THD are variable, ranging from early-onset lethal disease to mild Parkinson disease-like symptoms appearing in adolescence. Until 2014, approximately 70 THD patients with a total of 40 different disease-related missense mutations, five nonsense mutations, and three mutations in the promoter region of the tyrosine hydroxylase (TH) gene have been reported. We collected clinical and biochemical data in the literature for all variants, and also generated mutant forms of TH variants previously not studied (N = 23). We compared the in vitro solubility, thermal stability, and kinetic properties of the TH variants to determine the cause(s) of their impaired enzyme activity, and found great heterogeneity in all these properties among the mutated forms. Some TH variants had specific kinetic anomalies and phenylalanine hydroxylase, and Dopa oxidase activities were measured for variants that showed signs of altered substrate binding. p.Arg233His, p.Gly247Ser, and p.Phe375Leu had shifted substrate specificity from tyrosine to phenylalanine and Dopa, whereas p.Cys359Phe had an impaired activity toward these substrates. The new data about pathogenic mechanisms presented are expected to contribute to develop individualized therapy for THD patients. |
format | Online Article Text |
id | pubmed-4312968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-43129682015-02-10 Functional Studies of Tyrosine Hydroxylase Missense Variants Reveal Distinct Patterns of Molecular Defects in Dopa-Responsive Dystonia Fossbakk, Agnete Kleppe, Rune Knappskog, Per M Martinez, Aurora Haavik, Jan Hum Mutat Research Article Congenital tyrosine hydroxylase deficiency (THD) is found in autosomal-recessive Dopa-responsive dystonia and related neurological syndromes. The clinical manifestations of THD are variable, ranging from early-onset lethal disease to mild Parkinson disease-like symptoms appearing in adolescence. Until 2014, approximately 70 THD patients with a total of 40 different disease-related missense mutations, five nonsense mutations, and three mutations in the promoter region of the tyrosine hydroxylase (TH) gene have been reported. We collected clinical and biochemical data in the literature for all variants, and also generated mutant forms of TH variants previously not studied (N = 23). We compared the in vitro solubility, thermal stability, and kinetic properties of the TH variants to determine the cause(s) of their impaired enzyme activity, and found great heterogeneity in all these properties among the mutated forms. Some TH variants had specific kinetic anomalies and phenylalanine hydroxylase, and Dopa oxidase activities were measured for variants that showed signs of altered substrate binding. p.Arg233His, p.Gly247Ser, and p.Phe375Leu had shifted substrate specificity from tyrosine to phenylalanine and Dopa, whereas p.Cys359Phe had an impaired activity toward these substrates. The new data about pathogenic mechanisms presented are expected to contribute to develop individualized therapy for THD patients. BlackWell Publishing Ltd 2014-07 2014-06-03 /pmc/articles/PMC4312968/ /pubmed/24753243 http://dx.doi.org/10.1002/humu.22565 Text en © 2014 The Authors. Human Mutation published by Wiley Periodicals, Inc. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Research Article Fossbakk, Agnete Kleppe, Rune Knappskog, Per M Martinez, Aurora Haavik, Jan Functional Studies of Tyrosine Hydroxylase Missense Variants Reveal Distinct Patterns of Molecular Defects in Dopa-Responsive Dystonia |
title | Functional Studies of Tyrosine Hydroxylase Missense Variants Reveal Distinct Patterns of Molecular Defects in Dopa-Responsive Dystonia |
title_full | Functional Studies of Tyrosine Hydroxylase Missense Variants Reveal Distinct Patterns of Molecular Defects in Dopa-Responsive Dystonia |
title_fullStr | Functional Studies of Tyrosine Hydroxylase Missense Variants Reveal Distinct Patterns of Molecular Defects in Dopa-Responsive Dystonia |
title_full_unstemmed | Functional Studies of Tyrosine Hydroxylase Missense Variants Reveal Distinct Patterns of Molecular Defects in Dopa-Responsive Dystonia |
title_short | Functional Studies of Tyrosine Hydroxylase Missense Variants Reveal Distinct Patterns of Molecular Defects in Dopa-Responsive Dystonia |
title_sort | functional studies of tyrosine hydroxylase missense variants reveal distinct patterns of molecular defects in dopa-responsive dystonia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312968/ https://www.ncbi.nlm.nih.gov/pubmed/24753243 http://dx.doi.org/10.1002/humu.22565 |
work_keys_str_mv | AT fossbakkagnete functionalstudiesoftyrosinehydroxylasemissensevariantsrevealdistinctpatternsofmoleculardefectsindoparesponsivedystonia AT klepperune functionalstudiesoftyrosinehydroxylasemissensevariantsrevealdistinctpatternsofmoleculardefectsindoparesponsivedystonia AT knappskogperm functionalstudiesoftyrosinehydroxylasemissensevariantsrevealdistinctpatternsofmoleculardefectsindoparesponsivedystonia AT martinezaurora functionalstudiesoftyrosinehydroxylasemissensevariantsrevealdistinctpatternsofmoleculardefectsindoparesponsivedystonia AT haavikjan functionalstudiesoftyrosinehydroxylasemissensevariantsrevealdistinctpatternsofmoleculardefectsindoparesponsivedystonia |