Cargando…
DNA Damage Following Pulmonary Exposure by Instillation to Low Doses of Carbon Black (Printex 90) Nanoparticles in Mice
We previously observed genotoxic effects of carbon black nanoparticles at low doses relative to the Danish Occupational Exposure Limit (3.5 mg/m(3)). Furthermore, DNA damage occurred in broncho-alveolar lavage (BAL) cells in the absence of inflammation, indicating that inflammation is not required f...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312987/ https://www.ncbi.nlm.nih.gov/pubmed/25042074 http://dx.doi.org/10.1002/em.21888 |
_version_ | 1782355190348775424 |
---|---|
author | Kyjovska, Zdenka O Jacobsen, Nicklas R Saber, Anne T Bengtson, Stefan Jackson, Petra Wallin, Håkan Vogel, Ulla |
author_facet | Kyjovska, Zdenka O Jacobsen, Nicklas R Saber, Anne T Bengtson, Stefan Jackson, Petra Wallin, Håkan Vogel, Ulla |
author_sort | Kyjovska, Zdenka O |
collection | PubMed |
description | We previously observed genotoxic effects of carbon black nanoparticles at low doses relative to the Danish Occupational Exposure Limit (3.5 mg/m(3)). Furthermore, DNA damage occurred in broncho-alveolar lavage (BAL) cells in the absence of inflammation, indicating that inflammation is not required for the genotoxic effects of carbon black. In this study, we investigated inflammatory and acute phase response in addition to genotoxic effects occurring following exposure to nanoparticulate carbon black (NPCB) at even lower doses. C57BL/6JBomTac mice were examined 1, 3, and 28 days after a single instillation of 0.67, 2, 6, and 162 µg Printex 90 NPCB and vehicle. Cellular composition and protein concentration was evaluated in BAL fluid as markers of inflammatory response and cell damage. DNA strand breaks in BAL cells, lung, and liver tissue were assessed using the alkaline comet assay. The pulmonary acute phase response was analyzed by Saa3 mRNA real-time quantitative PCR. Instillation of the low doses of NPCB induced a slight neutrophil influx one day after exposure. Pulmonary exposure to small doses of NPCB caused an increase in DNA strand breaks in BAL cells and lung tissue measured using the comet assay. We interpret the increased DNA strand breaks occurring following these low exposure doses of NPCB as DNA damage caused by primary genotoxicity in the absence of substantial inflammation, cell damage, and acute phase response. Environ. Mol. Mutagen. 56:41–49, 2015. © 2014 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society |
format | Online Article Text |
id | pubmed-4312987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-43129872015-02-10 DNA Damage Following Pulmonary Exposure by Instillation to Low Doses of Carbon Black (Printex 90) Nanoparticles in Mice Kyjovska, Zdenka O Jacobsen, Nicklas R Saber, Anne T Bengtson, Stefan Jackson, Petra Wallin, Håkan Vogel, Ulla Environ Mol Mutagen Research Articles We previously observed genotoxic effects of carbon black nanoparticles at low doses relative to the Danish Occupational Exposure Limit (3.5 mg/m(3)). Furthermore, DNA damage occurred in broncho-alveolar lavage (BAL) cells in the absence of inflammation, indicating that inflammation is not required for the genotoxic effects of carbon black. In this study, we investigated inflammatory and acute phase response in addition to genotoxic effects occurring following exposure to nanoparticulate carbon black (NPCB) at even lower doses. C57BL/6JBomTac mice were examined 1, 3, and 28 days after a single instillation of 0.67, 2, 6, and 162 µg Printex 90 NPCB and vehicle. Cellular composition and protein concentration was evaluated in BAL fluid as markers of inflammatory response and cell damage. DNA strand breaks in BAL cells, lung, and liver tissue were assessed using the alkaline comet assay. The pulmonary acute phase response was analyzed by Saa3 mRNA real-time quantitative PCR. Instillation of the low doses of NPCB induced a slight neutrophil influx one day after exposure. Pulmonary exposure to small doses of NPCB caused an increase in DNA strand breaks in BAL cells and lung tissue measured using the comet assay. We interpret the increased DNA strand breaks occurring following these low exposure doses of NPCB as DNA damage caused by primary genotoxicity in the absence of substantial inflammation, cell damage, and acute phase response. Environ. Mol. Mutagen. 56:41–49, 2015. © 2014 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society BlackWell Publishing Ltd 2015-01 2014-07-18 /pmc/articles/PMC4312987/ /pubmed/25042074 http://dx.doi.org/10.1002/em.21888 Text en © 2014 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Kyjovska, Zdenka O Jacobsen, Nicklas R Saber, Anne T Bengtson, Stefan Jackson, Petra Wallin, Håkan Vogel, Ulla DNA Damage Following Pulmonary Exposure by Instillation to Low Doses of Carbon Black (Printex 90) Nanoparticles in Mice |
title | DNA Damage Following Pulmonary Exposure by Instillation to Low Doses of Carbon Black (Printex 90) Nanoparticles in Mice |
title_full | DNA Damage Following Pulmonary Exposure by Instillation to Low Doses of Carbon Black (Printex 90) Nanoparticles in Mice |
title_fullStr | DNA Damage Following Pulmonary Exposure by Instillation to Low Doses of Carbon Black (Printex 90) Nanoparticles in Mice |
title_full_unstemmed | DNA Damage Following Pulmonary Exposure by Instillation to Low Doses of Carbon Black (Printex 90) Nanoparticles in Mice |
title_short | DNA Damage Following Pulmonary Exposure by Instillation to Low Doses of Carbon Black (Printex 90) Nanoparticles in Mice |
title_sort | dna damage following pulmonary exposure by instillation to low doses of carbon black (printex 90) nanoparticles in mice |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312987/ https://www.ncbi.nlm.nih.gov/pubmed/25042074 http://dx.doi.org/10.1002/em.21888 |
work_keys_str_mv | AT kyjovskazdenkao dnadamagefollowingpulmonaryexposurebyinstillationtolowdosesofcarbonblackprintex90nanoparticlesinmice AT jacobsennicklasr dnadamagefollowingpulmonaryexposurebyinstillationtolowdosesofcarbonblackprintex90nanoparticlesinmice AT saberannet dnadamagefollowingpulmonaryexposurebyinstillationtolowdosesofcarbonblackprintex90nanoparticlesinmice AT bengtsonstefan dnadamagefollowingpulmonaryexposurebyinstillationtolowdosesofcarbonblackprintex90nanoparticlesinmice AT jacksonpetra dnadamagefollowingpulmonaryexposurebyinstillationtolowdosesofcarbonblackprintex90nanoparticlesinmice AT wallinhakan dnadamagefollowingpulmonaryexposurebyinstillationtolowdosesofcarbonblackprintex90nanoparticlesinmice AT vogelulla dnadamagefollowingpulmonaryexposurebyinstillationtolowdosesofcarbonblackprintex90nanoparticlesinmice |