Cargando…

Human Health Effects of Dichloromethane: Key Findings and Scientific Issues

Background: The U.S. EPA’s Integrated Risk Information System (IRIS) completed an updated toxicological review of dichloromethane in November 2011. Objectives: In this commentary we summarize key results and issues of this review, including exposure sources, identification of potential health effect...

Descripción completa

Detalles Bibliográficos
Autores principales: Schlosser, Paul M., Bale, Ambuja S., Gibbons, Catherine F., Wilkins, Amina, Cooper, Glinda S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: NLM-Export 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314245/
https://www.ncbi.nlm.nih.gov/pubmed/25325283
http://dx.doi.org/10.1289/ehp.1308030
Descripción
Sumario:Background: The U.S. EPA’s Integrated Risk Information System (IRIS) completed an updated toxicological review of dichloromethane in November 2011. Objectives: In this commentary we summarize key results and issues of this review, including exposure sources, identification of potential health effects, and updated physiologically based pharmacokinetic (PBPK) modeling. Methods: We performed a comprehensive review of primary research studies and evaluation of PBPK models. Discussion: Hepatotoxicity was observed in oral and inhalation exposure studies in several studies in animals; neurological effects were also identified as a potential area of concern. Dichloromethane was classified as likely to be carcinogenic in humans based primarily on evidence of carcinogenicity at two sites (liver and lung) in male and female B6C3F(1) mice (inhalation exposure) and at one site (liver) in male B6C3F(1) mice (drinking-water exposure). Recent epidemiologic studies of dichloromethane (seven studies of hematopoietic cancers published since 2000) provide additional data raising concerns about associations with non-Hodgkin lymphoma and multiple myeloma. Although there are gaps in the database for dichloromethane genotoxicity (i.e., DNA adduct formation and gene mutations in target tissues in vivo), the positive DNA damage assays correlated with tissue and/or species availability of functional glutathione S-transferase (GST) metabolic activity, the key activation pathway for dichloromethane-induced cancer. Innovations in the IRIS assessment include estimation of cancer risk specifically for a presumed sensitive genotype (GST-theta-1+/+), and PBPK modeling accounting for human physiological distributions based on the expected distribution for all individuals 6 months to 80 years of age. Conclusion: The 2011 IRIS assessment of dichloromethane provides insights into the toxicity of a commonly used solvent. Citation: Schlosser PM, Bale AS, Gibbons CF, Wilkins A, Cooper GS. 2015. Human health effects of dichloromethane: key findings and scientific issues. Environ Health Perspect 123:114–119; http://dx.doi.org/10.1289/ehp.1308030