Cargando…
Evaluating Health Risks from Inhaled Polychlorinated Biphenyls: Research Needs for Addressing Uncertainty
Background: Indoor air concentrations of polychlorinated biphenyls (PCBs) in some buildings are one or more orders of magnitude higher than background levels. In response to this, efforts have been made to assess the potential health risk posed by inhaled PCBs. These efforts are hindered by uncertai...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
NLM-Export
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314250/ https://www.ncbi.nlm.nih.gov/pubmed/25302536 http://dx.doi.org/10.1289/ehp.1408564 |
Sumario: | Background: Indoor air concentrations of polychlorinated biphenyls (PCBs) in some buildings are one or more orders of magnitude higher than background levels. In response to this, efforts have been made to assess the potential health risk posed by inhaled PCBs. These efforts are hindered by uncertainties related to the characterization and assessment of source, exposure, and exposure-response. Objectives: We briefly describe some common sources of PCBs in indoor air and estimate the contribution of inhalation exposure to total PCB exposure for select age groups. Next, we identify critical areas of research needed to improve assessment of exposure and exposure response for inhaled PCBs. Discussion: Although the manufacture of PCBs was banned in the United States in 1979, many buildings constructed before then still contain potential sources of indoor air PCB contamination. In some indoor settings and for some age groups, inhalation may contribute more to total PCB exposure than any other route of exposure. PCB exposure has been associated with human health effects, but data specific to the inhalation route are scarce. To support exposure–response assessment, it is critical that future investigations of the health impacts of PCB inhalation carefully consider certain aspects of study design, including characterization of the PCB mixture present. Conclusions: In certain contexts, inhalation exposure to PCBs may contribute more to total PCB exposure than previously assumed. New epidemiological and toxicological studies addressing the potential health impacts of inhaled PCBs may be useful for quantifying exposure–response relationships and evaluating risks. Citation: Lehmann GM, Christensen K, Maddaloni M, Phillips LJ. 2015. Evaluating health risks from inhaled polychlorinated biphenyls: research needs for addressing uncertainty. Environ Health Perspect 123:109–113; http://dx.doi.org/10.1289/ehp.1408564 |
---|