Cargando…
Ecophysiological responses to different forest patch type of two codominant tree seedlings
According to gap-phase dynamics theory, forests can be divided into four distinct patch types: gap patch (G), building patch (B), mature patch (M), and degeneration patch (D). Varying light conditions across patch types are one of the most important factors affecting the coexistence of vegetation. M...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314260/ https://www.ncbi.nlm.nih.gov/pubmed/25691956 http://dx.doi.org/10.1002/ece3.1368 |
_version_ | 1782355314753929216 |
---|---|
author | Duan, Renyan Huang, Minyi Kong, Xiaoquan Wang, Zhigao Fan, Weiyi |
author_facet | Duan, Renyan Huang, Minyi Kong, Xiaoquan Wang, Zhigao Fan, Weiyi |
author_sort | Duan, Renyan |
collection | PubMed |
description | According to gap-phase dynamics theory, forests can be divided into four distinct patch types: gap patch (G), building patch (B), mature patch (M), and degeneration patch (D). Varying light conditions across patch types are one of the most important factors affecting the coexistence of vegetation. Mechanisms of coexistence can be understood through detailed knowledge of ecophysiological responses of codominant tree seedlings to patch types. The following study was conducted to determine ecophysiological responses of Cyclobalanopsis glauca (an evergreen broad-leaved species) and Bothrocaryum controversum (a deciduous broad-leaved species) to four different patch types. During the gap-phase dynamics, light intensity and the magnitude of change in the four different patches followed the order of: G > B > D > M. Both species had the greatest photosynthetic capacity in the G patch. Dry leaf mass per area (LMA), Chlorophyll a + b concentration (Chl), carotenoids (Car), and nitrogen content per area (N(a)) all responded to changes in light across patch type, but B. controversum showed greater sensitivity and changes than C. glauca. From G to M patch, the maximal quantum efficiency of PSII (F(v)/F(m)) had a larger variation magnitude for B. controversum than for C. glauca. From G to M patch, B. controversum showed significant changes in gas exchange, while C. glauca showed only small changes. Ecophysiological trait partitioning of response to light in different patches provides a possible explanation of a coexistence mechanism. |
format | Online Article Text |
id | pubmed-4314260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-43142602015-02-17 Ecophysiological responses to different forest patch type of two codominant tree seedlings Duan, Renyan Huang, Minyi Kong, Xiaoquan Wang, Zhigao Fan, Weiyi Ecol Evol Original Research According to gap-phase dynamics theory, forests can be divided into four distinct patch types: gap patch (G), building patch (B), mature patch (M), and degeneration patch (D). Varying light conditions across patch types are one of the most important factors affecting the coexistence of vegetation. Mechanisms of coexistence can be understood through detailed knowledge of ecophysiological responses of codominant tree seedlings to patch types. The following study was conducted to determine ecophysiological responses of Cyclobalanopsis glauca (an evergreen broad-leaved species) and Bothrocaryum controversum (a deciduous broad-leaved species) to four different patch types. During the gap-phase dynamics, light intensity and the magnitude of change in the four different patches followed the order of: G > B > D > M. Both species had the greatest photosynthetic capacity in the G patch. Dry leaf mass per area (LMA), Chlorophyll a + b concentration (Chl), carotenoids (Car), and nitrogen content per area (N(a)) all responded to changes in light across patch type, but B. controversum showed greater sensitivity and changes than C. glauca. From G to M patch, the maximal quantum efficiency of PSII (F(v)/F(m)) had a larger variation magnitude for B. controversum than for C. glauca. From G to M patch, B. controversum showed significant changes in gas exchange, while C. glauca showed only small changes. Ecophysiological trait partitioning of response to light in different patches provides a possible explanation of a coexistence mechanism. BlackWell Publishing Ltd 2015-01 2014-12-21 /pmc/articles/PMC4314260/ /pubmed/25691956 http://dx.doi.org/10.1002/ece3.1368 Text en © 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Duan, Renyan Huang, Minyi Kong, Xiaoquan Wang, Zhigao Fan, Weiyi Ecophysiological responses to different forest patch type of two codominant tree seedlings |
title | Ecophysiological responses to different forest patch type of two codominant tree seedlings |
title_full | Ecophysiological responses to different forest patch type of two codominant tree seedlings |
title_fullStr | Ecophysiological responses to different forest patch type of two codominant tree seedlings |
title_full_unstemmed | Ecophysiological responses to different forest patch type of two codominant tree seedlings |
title_short | Ecophysiological responses to different forest patch type of two codominant tree seedlings |
title_sort | ecophysiological responses to different forest patch type of two codominant tree seedlings |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314260/ https://www.ncbi.nlm.nih.gov/pubmed/25691956 http://dx.doi.org/10.1002/ece3.1368 |
work_keys_str_mv | AT duanrenyan ecophysiologicalresponsestodifferentforestpatchtypeoftwocodominanttreeseedlings AT huangminyi ecophysiologicalresponsestodifferentforestpatchtypeoftwocodominanttreeseedlings AT kongxiaoquan ecophysiologicalresponsestodifferentforestpatchtypeoftwocodominanttreeseedlings AT wangzhigao ecophysiologicalresponsestodifferentforestpatchtypeoftwocodominanttreeseedlings AT fanweiyi ecophysiologicalresponsestodifferentforestpatchtypeoftwocodominanttreeseedlings |