Cargando…
X chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging
The present study aimed to investigate the X chrochromosome inactivation (XCI) status in long-term cultured human parthenogenetic embryonic stem cells. One human embryonic stem (hES) cell line and 2 human parthenogenetic embryonic stem (hPES) cell lines were subjected to long-term culture in vitro (...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314418/ https://www.ncbi.nlm.nih.gov/pubmed/25524499 http://dx.doi.org/10.3892/ijmm.2014.2044 |
_version_ | 1782355322862567424 |
---|---|
author | QI, QUAN DING, CHENHUI HONG, PINGPING YANG, GANG XIE, YANXIN WANG, JING HUANG, SUNXING HE, KE ZHOU, CANQUAN |
author_facet | QI, QUAN DING, CHENHUI HONG, PINGPING YANG, GANG XIE, YANXIN WANG, JING HUANG, SUNXING HE, KE ZHOU, CANQUAN |
author_sort | QI, QUAN |
collection | PubMed |
description | The present study aimed to investigate the X chrochromosome inactivation (XCI) status in long-term cultured human parthenogenetic embryonic stem cells. One human embryonic stem (hES) cell line and 2 human parthenogenetic embryonic stem (hPES) cell lines were subjected to long-term culture in vitro (>50 passages). Karyotyping, array-based comparative genomic hybridization (aCGH), X-inactive specific transcript (XIST) RNA, immunofluorescence staining and real-time PCR were used to assess the chromosome karyotypes of these cells and the XCI status. X chromosome microdeletion was observed in the hPES-2 cells following culture for 50 passages. As early as 20 passages, XIST RNA expression was detected in the hPES-2 cells and was followed by low X-linked gene expression. The XIST RNA expression level was higher in the differentiated hPES-2 cells. The hPES-2′ cells that were subclones of hPES-2 retained the XCI status, and had low XIST and X-linked gene expression. XIST RNA expression remained at a low level in the differentiated hPES-2′ cells. The human biparental embryonic stem (hBES)-1 and hPES-1 cells did not exhibit XCI, and the differentiated hPES-1 cells had high expression levels of XIST RNA. In conclusion, the chromosome karyotypes of some hPES cell lines revealed instabilities. Similar to the hES cells, the hPES cells exhibited 3 XCI statuses. The unstable XCI status of the hPES-2 line may have been related to chromosome instability. These unstable chromosomes renedered these cells susceptible to environmental conditions and freezing processes, which may be the result of environmental adaptations. |
format | Online Article Text |
id | pubmed-4314418 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-43144182015-02-06 X chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging QI, QUAN DING, CHENHUI HONG, PINGPING YANG, GANG XIE, YANXIN WANG, JING HUANG, SUNXING HE, KE ZHOU, CANQUAN Int J Mol Med Articles The present study aimed to investigate the X chrochromosome inactivation (XCI) status in long-term cultured human parthenogenetic embryonic stem cells. One human embryonic stem (hES) cell line and 2 human parthenogenetic embryonic stem (hPES) cell lines were subjected to long-term culture in vitro (>50 passages). Karyotyping, array-based comparative genomic hybridization (aCGH), X-inactive specific transcript (XIST) RNA, immunofluorescence staining and real-time PCR were used to assess the chromosome karyotypes of these cells and the XCI status. X chromosome microdeletion was observed in the hPES-2 cells following culture for 50 passages. As early as 20 passages, XIST RNA expression was detected in the hPES-2 cells and was followed by low X-linked gene expression. The XIST RNA expression level was higher in the differentiated hPES-2 cells. The hPES-2′ cells that were subclones of hPES-2 retained the XCI status, and had low XIST and X-linked gene expression. XIST RNA expression remained at a low level in the differentiated hPES-2′ cells. The human biparental embryonic stem (hBES)-1 and hPES-1 cells did not exhibit XCI, and the differentiated hPES-1 cells had high expression levels of XIST RNA. In conclusion, the chromosome karyotypes of some hPES cell lines revealed instabilities. Similar to the hES cells, the hPES cells exhibited 3 XCI statuses. The unstable XCI status of the hPES-2 line may have been related to chromosome instability. These unstable chromosomes renedered these cells susceptible to environmental conditions and freezing processes, which may be the result of environmental adaptations. D.A. Spandidos 2015-03 2014-12-18 /pmc/articles/PMC4314418/ /pubmed/25524499 http://dx.doi.org/10.3892/ijmm.2014.2044 Text en Copyright © 2015, Spandidos Publications http://creativecommons.org/licenses/by/3.0 This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Articles QI, QUAN DING, CHENHUI HONG, PINGPING YANG, GANG XIE, YANXIN WANG, JING HUANG, SUNXING HE, KE ZHOU, CANQUAN X chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging |
title | X chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging |
title_full | X chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging |
title_fullStr | X chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging |
title_full_unstemmed | X chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging |
title_short | X chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging |
title_sort | x chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314418/ https://www.ncbi.nlm.nih.gov/pubmed/25524499 http://dx.doi.org/10.3892/ijmm.2014.2044 |
work_keys_str_mv | AT qiquan xchromosomeinactivationinhumanparthenogeneticembryonicstemcellsfollowingprolongedpassaging AT dingchenhui xchromosomeinactivationinhumanparthenogeneticembryonicstemcellsfollowingprolongedpassaging AT hongpingping xchromosomeinactivationinhumanparthenogeneticembryonicstemcellsfollowingprolongedpassaging AT yanggang xchromosomeinactivationinhumanparthenogeneticembryonicstemcellsfollowingprolongedpassaging AT xieyanxin xchromosomeinactivationinhumanparthenogeneticembryonicstemcellsfollowingprolongedpassaging AT wangjing xchromosomeinactivationinhumanparthenogeneticembryonicstemcellsfollowingprolongedpassaging AT huangsunxing xchromosomeinactivationinhumanparthenogeneticembryonicstemcellsfollowingprolongedpassaging AT heke xchromosomeinactivationinhumanparthenogeneticembryonicstemcellsfollowingprolongedpassaging AT zhoucanquan xchromosomeinactivationinhumanparthenogeneticembryonicstemcellsfollowingprolongedpassaging |