Cargando…
Maternal high-fat diet and obesity compromise fetal hematopoiesis
OBJECTIVE: Recent evidence indicates that the adult hematopoietic system is susceptible to diet-induced lineage skewing. It is not known whether the developing hematopoietic system is subject to metabolic programming via in utero high-fat diet (HFD) exposure, an established mechanism of adult diseas...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314531/ https://www.ncbi.nlm.nih.gov/pubmed/25685687 http://dx.doi.org/10.1016/j.molmet.2014.11.001 |
_version_ | 1782355327537119232 |
---|---|
author | Kamimae-Lanning, Ashley N. Krasnow, Stephanie M. Goloviznina, Natalya A. Zhu, Xinxia Roth-Carter, Quinn R. Levasseur, Peter R. Jeng, Sophia McWeeney, Shannon K. Kurre, Peter Marks, Daniel L. |
author_facet | Kamimae-Lanning, Ashley N. Krasnow, Stephanie M. Goloviznina, Natalya A. Zhu, Xinxia Roth-Carter, Quinn R. Levasseur, Peter R. Jeng, Sophia McWeeney, Shannon K. Kurre, Peter Marks, Daniel L. |
author_sort | Kamimae-Lanning, Ashley N. |
collection | PubMed |
description | OBJECTIVE: Recent evidence indicates that the adult hematopoietic system is susceptible to diet-induced lineage skewing. It is not known whether the developing hematopoietic system is subject to metabolic programming via in utero high-fat diet (HFD) exposure, an established mechanism of adult disease in several organ systems. We previously reported substantial losses in offspring liver size with prenatal HFD. As the liver is the main hematopoietic organ in the fetus, we asked whether the developmental expansion of the hematopoietic stem and progenitor cell (HSPC) pool is compromised by prenatal HFD and/or maternal obesity. METHODS: We used quantitative assays, progenitor colony formation, flow cytometry, transplantation, and gene expression assays with a series of dietary manipulations to test the effects of gestational high-fat diet and maternal obesity on the day 14.5 fetal liver hematopoietic system. RESULTS: Maternal obesity, particularly when paired with gestational HFD, restricts physiological expansion of fetal HSPCs while promoting the opposing cell fate of differentiation. Importantly, these effects are only partially ameliorated by gestational dietary adjustments for obese dams. Competitive transplantation reveals compromised repopulation and myeloid-biased differentiation of HFD-programmed HSPCs to be a niche-dependent defect, apparent in HFD-conditioned male recipients. Fetal HSPC deficiencies coincide with perturbations in genes regulating metabolism, immune and inflammatory processes, and stress response, along with downregulation of genes critical for hematopoietic stem cell self-renewal and activation of pathways regulating cell migration. CONCLUSIONS: Our data reveal a previously unrecognized susceptibility to nutritional and metabolic developmental programming in the fetal HSPC compartment, which is a partially reversible and microenvironment-dependent defect perturbing stem and progenitor cell expansion and hematopoietic lineage commitment. |
format | Online Article Text |
id | pubmed-4314531 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-43145312015-02-14 Maternal high-fat diet and obesity compromise fetal hematopoiesis Kamimae-Lanning, Ashley N. Krasnow, Stephanie M. Goloviznina, Natalya A. Zhu, Xinxia Roth-Carter, Quinn R. Levasseur, Peter R. Jeng, Sophia McWeeney, Shannon K. Kurre, Peter Marks, Daniel L. Mol Metab Original Article OBJECTIVE: Recent evidence indicates that the adult hematopoietic system is susceptible to diet-induced lineage skewing. It is not known whether the developing hematopoietic system is subject to metabolic programming via in utero high-fat diet (HFD) exposure, an established mechanism of adult disease in several organ systems. We previously reported substantial losses in offspring liver size with prenatal HFD. As the liver is the main hematopoietic organ in the fetus, we asked whether the developmental expansion of the hematopoietic stem and progenitor cell (HSPC) pool is compromised by prenatal HFD and/or maternal obesity. METHODS: We used quantitative assays, progenitor colony formation, flow cytometry, transplantation, and gene expression assays with a series of dietary manipulations to test the effects of gestational high-fat diet and maternal obesity on the day 14.5 fetal liver hematopoietic system. RESULTS: Maternal obesity, particularly when paired with gestational HFD, restricts physiological expansion of fetal HSPCs while promoting the opposing cell fate of differentiation. Importantly, these effects are only partially ameliorated by gestational dietary adjustments for obese dams. Competitive transplantation reveals compromised repopulation and myeloid-biased differentiation of HFD-programmed HSPCs to be a niche-dependent defect, apparent in HFD-conditioned male recipients. Fetal HSPC deficiencies coincide with perturbations in genes regulating metabolism, immune and inflammatory processes, and stress response, along with downregulation of genes critical for hematopoietic stem cell self-renewal and activation of pathways regulating cell migration. CONCLUSIONS: Our data reveal a previously unrecognized susceptibility to nutritional and metabolic developmental programming in the fetal HSPC compartment, which is a partially reversible and microenvironment-dependent defect perturbing stem and progenitor cell expansion and hematopoietic lineage commitment. Elsevier 2014-11-18 /pmc/articles/PMC4314531/ /pubmed/25685687 http://dx.doi.org/10.1016/j.molmet.2014.11.001 Text en © 2014 The Authors http://creativecommons.org/licenses/by/3.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Original Article Kamimae-Lanning, Ashley N. Krasnow, Stephanie M. Goloviznina, Natalya A. Zhu, Xinxia Roth-Carter, Quinn R. Levasseur, Peter R. Jeng, Sophia McWeeney, Shannon K. Kurre, Peter Marks, Daniel L. Maternal high-fat diet and obesity compromise fetal hematopoiesis |
title | Maternal high-fat diet and obesity compromise fetal hematopoiesis |
title_full | Maternal high-fat diet and obesity compromise fetal hematopoiesis |
title_fullStr | Maternal high-fat diet and obesity compromise fetal hematopoiesis |
title_full_unstemmed | Maternal high-fat diet and obesity compromise fetal hematopoiesis |
title_short | Maternal high-fat diet and obesity compromise fetal hematopoiesis |
title_sort | maternal high-fat diet and obesity compromise fetal hematopoiesis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314531/ https://www.ncbi.nlm.nih.gov/pubmed/25685687 http://dx.doi.org/10.1016/j.molmet.2014.11.001 |
work_keys_str_mv | AT kamimaelanningashleyn maternalhighfatdietandobesitycompromisefetalhematopoiesis AT krasnowstephaniem maternalhighfatdietandobesitycompromisefetalhematopoiesis AT golovizninanatalyaa maternalhighfatdietandobesitycompromisefetalhematopoiesis AT zhuxinxia maternalhighfatdietandobesitycompromisefetalhematopoiesis AT rothcarterquinnr maternalhighfatdietandobesitycompromisefetalhematopoiesis AT levasseurpeterr maternalhighfatdietandobesitycompromisefetalhematopoiesis AT jengsophia maternalhighfatdietandobesitycompromisefetalhematopoiesis AT mcweeneyshannonk maternalhighfatdietandobesitycompromisefetalhematopoiesis AT kurrepeter maternalhighfatdietandobesitycompromisefetalhematopoiesis AT marksdaniell maternalhighfatdietandobesitycompromisefetalhematopoiesis |