Cargando…

Liriodenine induces the apoptosis of human laryngocarcinoma cells via the upregulation of p53 expression

Laryngocarcinoma is one of the most aggressive cancers that affects the head and neck region. The survival rate of patients with laryngocarcinoma is low due to late metastases and the resistance of the disease to chemotherapy and radiotherapy. Liriodenine, an alkaloid extracted from a number of plan...

Descripción completa

Detalles Bibliográficos
Autores principales: LI, LIANG, XU, YING, WANG, BINQUAN
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314988/
https://www.ncbi.nlm.nih.gov/pubmed/25663867
http://dx.doi.org/10.3892/ol.2014.2834
Descripción
Sumario:Laryngocarcinoma is one of the most aggressive cancers that affects the head and neck region. The survival rate of patients with laryngocarcinoma is low due to late metastases and the resistance of the disease to chemotherapy and radiotherapy. Liriodenine, an alkaloid extracted from a number of plant species, has demonstrated antitumor effects on multiple types of cancer. However, the effects of liriodenine upon laryngocarcinoma, and the underlying mechanisms, are yet to be elucidated. The present study therefore investigated the potential antitumor effects of liriodenine on HEp-2 human laryngocarcinoma cells in vitro and HEp-2-implanted nude mice in vivo. Liriodenine induced significant apoptosis and inhibition of cell migration in the HEp-2 cells. Furthermore, the rate of tumor growth in the HEp-2-implanted nude mice was inhibited by the administration of liriodenine. The potential mechanism underlying the antitumor effects of liriodenine may result from an upregulative effect upon p53 expression, which ultimately induces cellular apoptosis. By contrast, the downregulation of p53 significantly reduced the antitumor effects of liriodenine. Together, these results suggest that liriodenine exhibits potent antitumor activities in laryngocarcinoma HEp-2 cells, in vitro and in vivo, via the upregulation of p53 expression. Liriodenine may therefore be a potential therapy for the treatment of laryngocarcinoma.