Cargando…
High-Dimensional ICA Analysis Detects Within-Network Functional Connectivity Damage of Default-Mode and Sensory-Motor Networks in Alzheimer’s Disease
High-dimensional independent component analysis (ICA), compared to low-dimensional ICA, allows to conduct a detailed parcellation of the resting-state networks. The purpose of this study was to give further insight into functional connectivity (FC) in Alzheimer’s disease (AD) using high-dimensional...
Autores principales: | Dipasquale, Ottavia, Griffanti, Ludovica, Clerici, Mario, Nemni, Raffaello, Baselli, Giuseppe, Baglio, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315015/ https://www.ncbi.nlm.nih.gov/pubmed/25691865 http://dx.doi.org/10.3389/fnhum.2015.00043 |
Ejemplares similares
-
Effective artifact removal in resting state fMRI data improves detection of DMN functional connectivity alteration in Alzheimer's disease
por: Griffanti, Ludovica, et al.
Publicado: (2015) -
Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning
por: Baglio, Francesca, et al.
Publicado: (2014) -
Assessing Corpus Callosum Changes in Alzheimer's Disease: Comparison between Tract-Based Spatial Statistics and Atlas-Based Tractography
por: Preti, Maria Giulia, et al.
Publicado: (2012) -
A Novel Approach of Groupwise fMRI-Guided Tractography Allowing to Characterize the Clinical Evolution of Alzheimer's Disease
por: Preti, Maria Giulia, et al.
Publicado: (2014) -
Exploring distinct default mode and semantic networks using a systematic ICA approach
por: Jackson, Rebecca L., et al.
Publicado: (2019)