Cargando…
A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data
BACKGROUND: Investigations into novel biomarkers using omics techniques generate large amounts of data. Due to their size and numbers of attributes, these data are suitable for analysis with machine learning methods. A key component of typical machine learning pipelines for omics data is feature sel...
Autores principales: | Swan, Anna L, Stekel, Dov J, Hodgman, Charlie, Allaway, David, Alqahtani, Mohammed H, Mobasheri, Ali, Bacardit, Jaume |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315157/ https://www.ncbi.nlm.nih.gov/pubmed/25923811 http://dx.doi.org/10.1186/1471-2164-16-S1-S2 |
Ejemplares similares
-
Analysis of mass spectrometry data from the secretome of an explant model of articular cartilage exposed to pro-inflammatory and anti-inflammatory stimuli using machine learning
por: Swan, Anna L, et al.
Publicado: (2013) -
RGIFE: a ranked guided iterative feature elimination heuristic for the identification of biomarkers
por: Lazzarini, Nicola, et al.
Publicado: (2017) -
Regulatory feedback response mechanisms to phosphate starvation in rice
por: Ajmera, Ishan, et al.
Publicado: (2018) -
Lipidomic analysis of plasma samples from women with polycystic ovary syndrome
por: Haoula, Zeina, et al.
Publicado: (2014) -
Heuristic bias in stem cell biology
por: Quesenberry, Peter, et al.
Publicado: (2019)