Cargando…
Mercury in precipitation over the coastal zone of the southern Baltic Sea, Poland
An investigation of atmospheric mercury was conducted in the urban coastal zone of the Gulf of Gdansk (Baltic Sea, Poland) in 2008. Rainwater samples were collected in bulk samplers and Hg concentration was determined using AAS method. Total mercury concentration ranged from 1.9 to 14.8 ng l(−1) (th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315877/ https://www.ncbi.nlm.nih.gov/pubmed/25189806 http://dx.doi.org/10.1007/s11356-014-3537-9 |
_version_ | 1782355523703668736 |
---|---|
author | Siudek, Patrycja Falkowska, Lucyna Brodecka, Aleksandra Kowalski, Artur Frankowski, Marcin Siepak, Jerzy |
author_facet | Siudek, Patrycja Falkowska, Lucyna Brodecka, Aleksandra Kowalski, Artur Frankowski, Marcin Siepak, Jerzy |
author_sort | Siudek, Patrycja |
collection | PubMed |
description | An investigation of atmospheric mercury was conducted in the urban coastal zone of the Gulf of Gdansk (Baltic Sea, Poland) in 2008. Rainwater samples were collected in bulk samplers and Hg concentration was determined using AAS method. Total mercury concentration ranged from 1.9 to 14.8 ng l(−1) (the mean was 8.3 ng l(−1) with standard deviation ±3.7), out of which about 34 % were water-soluble Hg(II) forms. Distribution of Hg species in rainwater was related to both the emission source and the atmospheric processes. During the sampling period, two maxima of Hg concentration in precipitation were observed: the first in the cold season and the second one in the warm season. Elevated concentrations of Hg in wintertime precipitation were generally the result of local urban atmospheric emission connected with the following anthropogenic sources: intensive combustion of fossil fuels in domestic furnaces, individual power/heat generating plants, and motor vehicles. During summertime, Hg° re-emitted from contaminated land and sea surfaces was photochemically oxidized by active atmospheric substances (e.g., hydroxyl radicals, hydrogen peroxide, halogens) and could be an additional source of atmospherically deposited Hg. The results presented in this work indicate that rainwater Hg concentration and deposition values are not much higher in comparison with other urban locations along the Baltic Sea basin and other coastal cities. However, the elevated mercury concentration in rainwater and, consequently, higher deposition ratio could appear occasionally as an effect of intensive anthropogenic emissions (domestic heating) and/or photochemical reactions. |
format | Online Article Text |
id | pubmed-4315877 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-43158772015-02-06 Mercury in precipitation over the coastal zone of the southern Baltic Sea, Poland Siudek, Patrycja Falkowska, Lucyna Brodecka, Aleksandra Kowalski, Artur Frankowski, Marcin Siepak, Jerzy Environ Sci Pollut Res Int Research Article An investigation of atmospheric mercury was conducted in the urban coastal zone of the Gulf of Gdansk (Baltic Sea, Poland) in 2008. Rainwater samples were collected in bulk samplers and Hg concentration was determined using AAS method. Total mercury concentration ranged from 1.9 to 14.8 ng l(−1) (the mean was 8.3 ng l(−1) with standard deviation ±3.7), out of which about 34 % were water-soluble Hg(II) forms. Distribution of Hg species in rainwater was related to both the emission source and the atmospheric processes. During the sampling period, two maxima of Hg concentration in precipitation were observed: the first in the cold season and the second one in the warm season. Elevated concentrations of Hg in wintertime precipitation were generally the result of local urban atmospheric emission connected with the following anthropogenic sources: intensive combustion of fossil fuels in domestic furnaces, individual power/heat generating plants, and motor vehicles. During summertime, Hg° re-emitted from contaminated land and sea surfaces was photochemically oxidized by active atmospheric substances (e.g., hydroxyl radicals, hydrogen peroxide, halogens) and could be an additional source of atmospherically deposited Hg. The results presented in this work indicate that rainwater Hg concentration and deposition values are not much higher in comparison with other urban locations along the Baltic Sea basin and other coastal cities. However, the elevated mercury concentration in rainwater and, consequently, higher deposition ratio could appear occasionally as an effect of intensive anthropogenic emissions (domestic heating) and/or photochemical reactions. Springer Berlin Heidelberg 2014-09-06 2015 /pmc/articles/PMC4315877/ /pubmed/25189806 http://dx.doi.org/10.1007/s11356-014-3537-9 Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/4.0/ Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Research Article Siudek, Patrycja Falkowska, Lucyna Brodecka, Aleksandra Kowalski, Artur Frankowski, Marcin Siepak, Jerzy Mercury in precipitation over the coastal zone of the southern Baltic Sea, Poland |
title | Mercury in precipitation over the coastal zone of the southern Baltic Sea, Poland |
title_full | Mercury in precipitation over the coastal zone of the southern Baltic Sea, Poland |
title_fullStr | Mercury in precipitation over the coastal zone of the southern Baltic Sea, Poland |
title_full_unstemmed | Mercury in precipitation over the coastal zone of the southern Baltic Sea, Poland |
title_short | Mercury in precipitation over the coastal zone of the southern Baltic Sea, Poland |
title_sort | mercury in precipitation over the coastal zone of the southern baltic sea, poland |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315877/ https://www.ncbi.nlm.nih.gov/pubmed/25189806 http://dx.doi.org/10.1007/s11356-014-3537-9 |
work_keys_str_mv | AT siudekpatrycja mercuryinprecipitationoverthecoastalzoneofthesouthernbalticseapoland AT falkowskalucyna mercuryinprecipitationoverthecoastalzoneofthesouthernbalticseapoland AT brodeckaaleksandra mercuryinprecipitationoverthecoastalzoneofthesouthernbalticseapoland AT kowalskiartur mercuryinprecipitationoverthecoastalzoneofthesouthernbalticseapoland AT frankowskimarcin mercuryinprecipitationoverthecoastalzoneofthesouthernbalticseapoland AT siepakjerzy mercuryinprecipitationoverthecoastalzoneofthesouthernbalticseapoland |