Cargando…

A+-Helix of Protein C Inhibitor (PCI) Is a Cell-penetrating Peptide That Mediates Cell Membrane Permeation of PCI

Protein C inhibitor (PCI) is a serpin with broad protease reactivity. It binds glycosaminoglycans and certain phospholipids that can modulate its inhibitory activity. PCI can penetrate through cellular membranes via binding to phosphatidylethanolamine. The exact mechanism of PCI internalization and...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Hanjiang, Wahlmüller, Felix Christof, Sarg, Bettina, Furtmüller, Margareta, Geiger, Margarethe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317013/
https://www.ncbi.nlm.nih.gov/pubmed/25488662
http://dx.doi.org/10.1074/jbc.M114.581736
Descripción
Sumario:Protein C inhibitor (PCI) is a serpin with broad protease reactivity. It binds glycosaminoglycans and certain phospholipids that can modulate its inhibitory activity. PCI can penetrate through cellular membranes via binding to phosphatidylethanolamine. The exact mechanism of PCI internalization and the intracellular role of the serpin are not well understood. Here we showed that testisin, a glycosylphosphatidylinositol-anchored serine protease, cleaved human PCI and mouse PCI (mPCI) at their reactive sites as well as at sites close to their N terminus. This cleavage was observed not only with testisin in solution but also with cell membrane-anchored testisin on U937 cells. The cleavage close to the N terminus released peptides rich in basic amino acids. Synthetic peptides corresponding to the released peptides of human PCI (His(1)–Arg(11)) and mPCI (Arg(1)–Ala(18)) functioned as cell-penetrating peptides. Because intact mPCI but not testisin-cleaved mPCI was internalized by Jurkat T cells, a truncated mPCI mimicking testisin-cleaved mPCI was created. The truncated mPCI lacking 18 amino acids at the N terminus was not taken up by Jurkat T cells. Therefore our model suggests that testisin or other proteases could regulate the internalization of PCI by removing its N terminus. This may represent one of the mechanisms regulating the intracellular functions of PCI.