Cargando…

A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre

Over the past decade intense laser fields with a single-cycle duration and even shorter, subcycle multicolour field transients have been generated and applied to drive attosecond phenomena in strong-field physics. Because of their extensive bandwidth, single-cycle fields cannot be emitted or amplifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Balciunas, T., Fourcade-Dutin, C., Fan, G., Witting, T., Voronin, A. A., Zheltikov, A. M., Gerome, F., Paulus, G. G., Baltuska, A., Benabid, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317490/
https://www.ncbi.nlm.nih.gov/pubmed/25625549
http://dx.doi.org/10.1038/ncomms7117
Descripción
Sumario:Over the past decade intense laser fields with a single-cycle duration and even shorter, subcycle multicolour field transients have been generated and applied to drive attosecond phenomena in strong-field physics. Because of their extensive bandwidth, single-cycle fields cannot be emitted or amplified by laser sources directly and, as a rule, are produced by external pulse compression—a combination of nonlinear optical spectral broadening followed up by dispersion compensation. Here we demonstrate a simple robust driver for high-field applications based on this Kagome fibre approach that ensures pulse self-compression down to the ultimate single-cycle limit and provides phase-controlled pulses with up to a 100 μJ energy level, depending on the filling gas, pressure and the waveguide length.