Cargando…
An Extended Affinity Propagation Clustering Method Based on Different Data Density Types
Affinity propagation (AP) algorithm, as a novel clustering method, does not require the users to specify the initial cluster centers in advance, which regards all data points as potential exemplars (cluster centers) equally and groups the clusters totally by the similar degree among the data points....
Autores principales: | Zhao, XiuLi, Xu, WeiXiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317584/ https://www.ncbi.nlm.nih.gov/pubmed/25685144 http://dx.doi.org/10.1155/2015/828057 |
Ejemplares similares
-
Affinity Propagation Clustering of Measurements for Multiple Extended Target Tracking
por: Zhang, Tao, et al.
Publicado: (2015) -
An Affinity Propagation-Based Self-Adaptive Clustering Method for Wireless Sensor Networks
por: Wang, Jin, et al.
Publicado: (2019) -
Definition of customer requirements in big data using word vectors
and affinity propagation clustering
por: Shi, Yanlin, et al.
Publicado: (2021) -
Density propagation based adaptive multi-density clustering algorithm
por: Wang, Yizhang, et al.
Publicado: (2018) -
Defining objective clusters for rabies virus sequences using affinity propagation clustering
por: Fischer, Susanne, et al.
Publicado: (2018)