Cargando…
Inferring Epidemiological Dynamics with Bayesian Coalescent Inference: The Merits of Deterministic and Stochastic Models
Estimation of epidemiological and population parameters from molecular sequence data has become central to the understanding of infectious disease dynamics. Various models have been proposed to infer details of the dynamics that describe epidemic progression. These include inference approaches deriv...
Autores principales: | Popinga, Alex, Vaughan, Tim, Stadler, Tanja, Drummond, Alexei J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317665/ https://www.ncbi.nlm.nih.gov/pubmed/25527289 http://dx.doi.org/10.1534/genetics.114.172791 |
Ejemplares similares
-
Efficient Bayesian inference under the structured coalescent
por: Vaughan, Timothy G., et al.
Publicado: (2014) -
Bayesian Inference of Sampled Ancestor Trees for Epidemiology and Fossil Calibration
por: Gavryushkina, Alexandra, et al.
Publicado: (2014) -
Inference of Epidemiological Dynamics Based on Simulated Phylogenies Using Birth-Death and Coalescent Models
por: Boskova, Veronika, et al.
Publicado: (2014) -
Bayesian inference and comparison of stochastic transcription elongation models
por: Douglas, Jordan, et al.
Publicado: (2020) -
Bayesian Inference of Species Networks from Multilocus Sequence Data
por: Zhang, Chi, et al.
Publicado: (2018)