Cargando…

Deficiency of Capicua disrupts bile acid homeostasis

Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type 1 and cancer in mammals; however, the in vivo physiological functions of CIC remain largely unknown. Here we show that Cic hypomorphic (Cic-L(-/-)) mice have impaired bile acid (BA) homeostasis associated with induction...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Eunjeong, Park, Sungjun, Choi, Nahyun, Lee, Jieon, Yoe, Jeehyun, Kim, Soeun, Jung, Hoe-Yune, Kim, Kyong-Tai, Kang, Hyojin, Fryer, John D., Zoghbi, Huda Y., Hwang, Daehee, Lee, Yoontae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317698/
https://www.ncbi.nlm.nih.gov/pubmed/25653040
http://dx.doi.org/10.1038/srep08272
Descripción
Sumario:Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type 1 and cancer in mammals; however, the in vivo physiological functions of CIC remain largely unknown. Here we show that Cic hypomorphic (Cic-L(-/-)) mice have impaired bile acid (BA) homeostasis associated with induction of proinflammatory cytokines. We discovered that several drug metabolism and BA transporter genes were down-regulated in Cic-L(-/-) liver, and that BA was increased in the liver and serum whereas bile was decreased within the gallbladder of Cic-L(-/-) mice. We also found that levels of proinflammatory cytokine genes were up-regulated in Cic-L(-/-) liver. Consistent with this finding, levels of hepatic transcriptional regulators, such as hepatic nuclear factor 1 alpha (HNF1α), CCAAT/enhancer-binding protein beta (C/EBPβ), forkhead box protein A2 (FOXA2), and retinoid X receptor alpha (RXRα), were markedly decreased in Cic-L(-/-) mice. Moreover, induction of tumor necrosis factor alpha (Tnfα) expression and decrease in the levels of FOXA2, C/EBPβ, and RXRα were found in Cic-L(-/-) liver before BA was accumulated, suggesting that inflammation might be the cause for the cholestasis in Cic-L(-/-) mice. Our findings indicate that CIC is a critical regulator of BA homeostasis, and that its dysfunction might be associated with chronic liver disease and metabolic disorders.