Cargando…

Specific molecular signatures of non-tumor liver tissue may predict a risk of hepatocarcinogenesis

Hepatocellular carcinoma (HCC) is one of the most common human cancers and a major cause of cancer-related death worldwide. The bleak outcomes of HCC patients even after curative treatment have been, at least partially, attributed to its multicentric origin. Therefore, it is necessary to examine not...

Descripción completa

Detalles Bibliográficos
Autores principales: Utsunomiya, Tohru, Shimada, Mitsuo, Morine, Yuji, Tajima, Atsushi, Imoto, Issei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317917/
https://www.ncbi.nlm.nih.gov/pubmed/24766251
http://dx.doi.org/10.1111/cas.12431
Descripción
Sumario:Hepatocellular carcinoma (HCC) is one of the most common human cancers and a major cause of cancer-related death worldwide. The bleak outcomes of HCC patients even after curative treatment have been, at least partially, attributed to its multicentric origin. Therefore, it is necessary to examine not only tumor tissue but also non-tumor liver tissue to investigate the molecular mechanisms operating during hepatocarcinogenesis based on the concept of “field cancerization”. Several studies previously investigated the association of molecular alterations in non-tumor liver tissue with clinical features and prognosis in HCC patients on a genome-wide scale. In particular, specific alterations of DNA methylation profiles have been confirmed in non-tumor liver tissue. This review focuses on the possible clinical value of array-based comprehensive analyses of molecular alterations, especially aberrant DNA methylation, in non-tumor liver tissue to clarify the risk of hepatocarcinogenesis. Carcinogenetic risk estimation based on specific methylation signatures may be advantageous for close follow-up of patients who are at high risk of HCC development. Furthermore, epigenetic therapies for patients with chronic liver diseases may be helpful to reduce the risk of HCC development because epigenetic alterations are potentially reversible, and thus provide promising molecular targets for therapeutic intervention.