Cargando…
Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers
BACKGROUND: Although major concerns exist regarding the potential consequences of human exposures to nanoscale carbon black (CB) particles, limited human toxicological data is currently available. The purpose of this study was to evaluate if nanoscale CB particles could be responsible, at least part...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318129/ https://www.ncbi.nlm.nih.gov/pubmed/25497989 http://dx.doi.org/10.1186/s12989-014-0073-1 |
Sumario: | BACKGROUND: Although major concerns exist regarding the potential consequences of human exposures to nanoscale carbon black (CB) particles, limited human toxicological data is currently available. The purpose of this study was to evaluate if nanoscale CB particles could be responsible, at least partially, for the altered lung function and inflammation observed in CB workers exposed to nanoscale CB particles. METHODS: Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Brunauer-Emmett-Teller were used to characterize CB. Eighty-one CB-exposed male workers and 104 non-exposed male workers were recruited. The pulmonary function test was performed and pro-inflammatory cytokines were evaluated. To further assess the deposition and pulmonary damage induced by CB nanoparticles, male BALB/c mice were exposed to CB for 6 hours per day for 7 or 14 days. The deposition of CB and the pathological changes of the lung tissue in mice were evaluated by paraffin sections and TEM. The cytokines levels in serum and lung tissue of mice were evaluated by ELISA and immunohistochemical staining (IHC). RESULTS: SEM and TEM images showed that the CB particles were 30 to 50 nm in size. In the CB workplace, the concentration of CB was 14.90 mg/m(3). Among these CB particles, 50.77% were less than 0.523 micrometer, and 99.55% were less than 2.5 micrometer in aerodynamic diameter. The reduction of lung function parameters including FEV1%, FEV/FVC, MMF%, and PEF% in CB workers was observed, and the IL-1β, IL-6, IL-8, MIP-1beta, and TNF- alpha had 2.86-, 6.85-, 1.49-, 3.35-, and 4.87-folds increase in serum of CB workers, respectively. In mice exposed to the aerosol CB, particles were deposited in the lung. The alveolar wall thickened and a large amount of inflammatory cells were observed in lung tissues after CB exposure. IL-6 and IL-8 levels were increased in both serum and lung homogenate. CONCLUSIONS: The data strongly suggests that nanoscale CB particles could be responsible for the lung function reduction and pro-inflammatory cytokines secretion in CB workers. These results, therefore, provide the first evidence of a link between human exposure to CB and long-term pulmonary effects. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12989-014-0073-1) contains supplementary material, which is available to authorized users. |
---|