Cargando…
Letting the data speak for themselves: a fully Bayesian approach to transcriptome assembly
A novel method for transcriptome assembly, Bayesembler, provides greater accuracy without sacrifice of computational speed, and particular advantages for alternative transcripts expressed at low levels.
Autor principal: | Schulz, Marcel H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318165/ https://www.ncbi.nlm.nih.gov/pubmed/25830215 http://dx.doi.org/10.1186/s13059-014-0498-8 |
Ejemplares similares
-
COVID-19 and hydroxychloroquine: Let the available data speak for themselves
por: Paliani, Ugo, et al.
Publicado: (2020) -
Is COVID-19 a Real Incentive for Flu Vaccination? Let the Numbers Speak for Themselves
por: Di Pumpo, Marcello, et al.
Publicado: (2021) -
What group 2 innate lymphoid cells tell themselves: autocrine signals play essential roles in mucosal immunity
por: Zhao, Yang, et al.
Publicado: (2021) -
The Hon. Sydney Holland's Latest Circular: "The Facts Speak for the Themselves"
Publicado: (1905) -
Data Don’t Speak for Themselves. Alternative Explanations for Long-Term Use of Psychiatric Drugs
por: Troisi, Alfonso
Publicado: (2020)