Cargando…
Neurodevelopment for syntactic processing distinguishes childhood stuttering recovery versus persistence
BACKGROUND: Characterized by the presence of involuntary speech disfluencies, developmental stuttering is a neurodevelopmental disorder of atypical speech-motor coordination. Although the etiology of stuttering is multifactorial, language development during early childhood may influence both the ons...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318174/ https://www.ncbi.nlm.nih.gov/pubmed/25657823 http://dx.doi.org/10.1186/1866-1955-7-4 |
_version_ | 1782355815784513536 |
---|---|
author | Usler, Evan Weber-Fox, Christine |
author_facet | Usler, Evan Weber-Fox, Christine |
author_sort | Usler, Evan |
collection | PubMed |
description | BACKGROUND: Characterized by the presence of involuntary speech disfluencies, developmental stuttering is a neurodevelopmental disorder of atypical speech-motor coordination. Although the etiology of stuttering is multifactorial, language development during early childhood may influence both the onset of the disorder and the likelihood of recovery. The purpose of this study was to determine whether differences in neural indices mediating language processing are associated with persistence or recovery in school-age children who stutter. METHODS: Event-related brain potentials (ERPs) were obtained from 31 6–7-year-olds, including nine children who do not stutter (CWNS), 11 children who had recovered from stuttering (CWS-Rec), and 11 children who persisted in stuttering (CWS-Per), matched for age, and all with similar socioeconomic status, nonverbal intelligence, and language ability. We examined ERPs elicited by semantic and syntactic (phrase structure) violations within an auditory narrative consisting of English and Jabberwocky sentences. In Jabberwocky sentences, content words were replaced with pseudowords to limit semantic context. A mixed effects repeated measures analysis of variance (ANOVA) was computed for ERP components with four within-subject factors, including condition, hemisphere, anterior/posterior distribution, and laterality. RESULTS: During the comprehension of English sentences, ERP activity mediating semantic and syntactic (phrase structure) processing did not distinguish CWS-Per, CWS-Rec, and CWNS. Semantic violations elicited a qualitatively similar N400 component across groups. Phrase structure violations within English sentences also elicited a similar P600 component in all groups. However, identical phrase structure violations within Jabberwocky sentences elicited a P600 in CWNS and CWS-Rec, but an N400-like effect in CWS-Per. CONCLUSIONS: The distinguishing neural patterns mediating syntactic, but not semantic, processing provide evidence that specific brain functions for some aspects of language processing may be associated with stuttering persistence. Unlike CWS-Rec and CWNS, the lack of semantic context in Jabberwocky sentences seemed to affect the syntactic processing strategies of CWS-Per, resulting in the elicitation of semantically based N400-like activity during syntactic (phrase structure) violations. This vulnerability suggests neural mechanisms associated with the processing of syntactic structure may be less mature in 6–7-year-old children whose stuttering persisted compared to their fluent or recovered peers. |
format | Online Article Text |
id | pubmed-4318174 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43181742015-02-06 Neurodevelopment for syntactic processing distinguishes childhood stuttering recovery versus persistence Usler, Evan Weber-Fox, Christine J Neurodev Disord Research BACKGROUND: Characterized by the presence of involuntary speech disfluencies, developmental stuttering is a neurodevelopmental disorder of atypical speech-motor coordination. Although the etiology of stuttering is multifactorial, language development during early childhood may influence both the onset of the disorder and the likelihood of recovery. The purpose of this study was to determine whether differences in neural indices mediating language processing are associated with persistence or recovery in school-age children who stutter. METHODS: Event-related brain potentials (ERPs) were obtained from 31 6–7-year-olds, including nine children who do not stutter (CWNS), 11 children who had recovered from stuttering (CWS-Rec), and 11 children who persisted in stuttering (CWS-Per), matched for age, and all with similar socioeconomic status, nonverbal intelligence, and language ability. We examined ERPs elicited by semantic and syntactic (phrase structure) violations within an auditory narrative consisting of English and Jabberwocky sentences. In Jabberwocky sentences, content words were replaced with pseudowords to limit semantic context. A mixed effects repeated measures analysis of variance (ANOVA) was computed for ERP components with four within-subject factors, including condition, hemisphere, anterior/posterior distribution, and laterality. RESULTS: During the comprehension of English sentences, ERP activity mediating semantic and syntactic (phrase structure) processing did not distinguish CWS-Per, CWS-Rec, and CWNS. Semantic violations elicited a qualitatively similar N400 component across groups. Phrase structure violations within English sentences also elicited a similar P600 component in all groups. However, identical phrase structure violations within Jabberwocky sentences elicited a P600 in CWNS and CWS-Rec, but an N400-like effect in CWS-Per. CONCLUSIONS: The distinguishing neural patterns mediating syntactic, but not semantic, processing provide evidence that specific brain functions for some aspects of language processing may be associated with stuttering persistence. Unlike CWS-Rec and CWNS, the lack of semantic context in Jabberwocky sentences seemed to affect the syntactic processing strategies of CWS-Per, resulting in the elicitation of semantically based N400-like activity during syntactic (phrase structure) violations. This vulnerability suggests neural mechanisms associated with the processing of syntactic structure may be less mature in 6–7-year-old children whose stuttering persisted compared to their fluent or recovered peers. BioMed Central 2015-01-20 2015 /pmc/articles/PMC4318174/ /pubmed/25657823 http://dx.doi.org/10.1186/1866-1955-7-4 Text en © Usler and Weber-Fox; licensee BioMed Central. 2015 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Usler, Evan Weber-Fox, Christine Neurodevelopment for syntactic processing distinguishes childhood stuttering recovery versus persistence |
title | Neurodevelopment for syntactic processing distinguishes childhood stuttering recovery versus persistence |
title_full | Neurodevelopment for syntactic processing distinguishes childhood stuttering recovery versus persistence |
title_fullStr | Neurodevelopment for syntactic processing distinguishes childhood stuttering recovery versus persistence |
title_full_unstemmed | Neurodevelopment for syntactic processing distinguishes childhood stuttering recovery versus persistence |
title_short | Neurodevelopment for syntactic processing distinguishes childhood stuttering recovery versus persistence |
title_sort | neurodevelopment for syntactic processing distinguishes childhood stuttering recovery versus persistence |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318174/ https://www.ncbi.nlm.nih.gov/pubmed/25657823 http://dx.doi.org/10.1186/1866-1955-7-4 |
work_keys_str_mv | AT uslerevan neurodevelopmentforsyntacticprocessingdistinguisheschildhoodstutteringrecoveryversuspersistence AT weberfoxchristine neurodevelopmentforsyntacticprocessingdistinguisheschildhoodstutteringrecoveryversuspersistence |