Cargando…

Bacillus subtilis KCTC 11782BP-Produced Alginate Oligosaccharide Effectively Suppresses Asthma via T-Helper Cell Type 2-Related Cytokines

According to the World Health Organization in 2013, 235 million people are afflicted with asthma. Asthma is a severe pulmonary disease that can be caused by the imbalance of T-helper (Th) type 1 (Th1) and type 2 (Th2) cells, and it is potentially fatal. In this study, we evaluated the anti-asthmatic...

Descripción completa

Detalles Bibliográficos
Autores principales: Bang, Mi-Ae, Seo, Ji-Hye, Seo, Joung-Wook, Jo, Gyung Hyun, Jung, Seoung Ki, Yu, Ri, Park, Dae-Hun, Park, Sang-Joon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319839/
https://www.ncbi.nlm.nih.gov/pubmed/25658604
http://dx.doi.org/10.1371/journal.pone.0117524
Descripción
Sumario:According to the World Health Organization in 2013, 235 million people are afflicted with asthma. Asthma is a severe pulmonary disease that can be caused by the imbalance of T-helper (Th) type 1 (Th1) and type 2 (Th2) cells, and it is potentially fatal. In this study, we evaluated the anti-asthmatic effect of alginate oligosaccharide (AO), which was prepared from seaweed and converted by Bacillus subtilis KCTC 11782BP, in the mouse model of ovalbumin (OVA)-induced asthma. BALB/c mice were divided into the vehicle control (sensitized but not challenged), asthma induction, positive control (1 mg/kg dexamethasone), 50 mg/kg/day AO-treated, 200 mg/kg/day AO-treated, and 400 mg/kg/day AO-treated groups. The numbers or levels of inflammatory cells, eosinophils, and immunoglobulin (Ig) E were measured in bronchoalveolar lavage fluid (BALF), and asthma-related morphological and cytokine changes were analyzed in lung tissues. Our results show that AO dramatically reduced inflammatory cell numbers, eosinophil count, and IgE levels in BALF, and it dose-dependently inhibited asthmatic histopathological changes in the lung. In addition, AO dose-dependently suppressed the expression of CD3(+) T-cell co-receptors, CD4(+) Th cells, CD8(+) cytotoxic T-cell-related factors, macrophages, and MHCII class. AO dose-dependently decreased the expression levels of Th1/2 cells-regulatory transcription factors such as GATA-3 which modulates Th2 cell proliferation and T-bet which does Th1 cell proliferation. The mRNA levels of all Th1/2-related cytokines, except IL-12α, were dose-dependently suppressed by AO treatment. In particular, the mRNA levels of IL-5, IL-6, and IL-13 were significantly inhibited by AO treatment. Our findings suggest that AO has the potential to be an anti-asthmatic drug candidate, due to its modulation of Th1/Th2 cytokines, which contribute to the pathogenesis of asthma.