Cargando…
PACAP Interacts with PAC(1) Receptors to Induce Tissue Plasminogen Activator (tPA) Expression and Activity in Schwann Cell-Like Cultures
Regeneration of peripheral nerves depends on the abilities of rejuvenating axons to migrate at the injury site through cellular debris and altered extracellular matrix, and then grow along the residual distal nerve sheath conduit and reinnervate synaptic targets. Considerable evidence suggest that g...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319891/ https://www.ncbi.nlm.nih.gov/pubmed/25658447 http://dx.doi.org/10.1371/journal.pone.0117799 |
_version_ | 1782356024180604928 |
---|---|
author | Castorina, Alessandro Waschek, James A. Marzagalli, Rubina Cardile, Venera Drago, Filippo |
author_facet | Castorina, Alessandro Waschek, James A. Marzagalli, Rubina Cardile, Venera Drago, Filippo |
author_sort | Castorina, Alessandro |
collection | PubMed |
description | Regeneration of peripheral nerves depends on the abilities of rejuvenating axons to migrate at the injury site through cellular debris and altered extracellular matrix, and then grow along the residual distal nerve sheath conduit and reinnervate synaptic targets. Considerable evidence suggest that glial cells participate in this process, although the mechanisms remain to be clarified. In cell culture, regenerating neurites secrete PACAP, a peptide shown to induce the expression of the protease tissue plasminogen activator (tPA) in neural cell types. In the present studies, we tested the hypothesis that PACAP can stimulate peripheral glial cells to produce tPA. More specifically, we addressed whether or not PACAP promoted the expression and activity of tPA in the Schwann cell line RT4-D6P2T, which shares biochemical and physical properties with Schwann cells. We found that PACAP dose- and time-dependently stimulated tPA expression both at the mRNA and protein level. Such effect was mimicked by maxadilan, a potent PAC1 receptor agonist, but not by the PACAP-related homolog VIP, suggesting a PAC1-mediated function. These actions appeared to be mediated at least in part by the Akt/CREB signaling cascade because wortmannin, a PI3K inhibitor, prevented peptide-driven CREB phosphorylation and tPA increase. Interestingly, treatment with BDNF mimicked PACAP actions on tPA, but acted through both the Akt and MAPK signaling pathways, while causing a robust increase in PACAP and PAC1 expression. PACAP6-38 totally blocked PACAP-driven tPA expression and in part hampered BDNF-mediated effects. We conclude that PACAP, acting through PAC1 receptors, stimulates tPA expression and activity in a Akt/CREB-dependent manner to promote proteolytic activity in Schwann-cell like cultures. |
format | Online Article Text |
id | pubmed-4319891 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43198912015-02-18 PACAP Interacts with PAC(1) Receptors to Induce Tissue Plasminogen Activator (tPA) Expression and Activity in Schwann Cell-Like Cultures Castorina, Alessandro Waschek, James A. Marzagalli, Rubina Cardile, Venera Drago, Filippo PLoS One Research Article Regeneration of peripheral nerves depends on the abilities of rejuvenating axons to migrate at the injury site through cellular debris and altered extracellular matrix, and then grow along the residual distal nerve sheath conduit and reinnervate synaptic targets. Considerable evidence suggest that glial cells participate in this process, although the mechanisms remain to be clarified. In cell culture, regenerating neurites secrete PACAP, a peptide shown to induce the expression of the protease tissue plasminogen activator (tPA) in neural cell types. In the present studies, we tested the hypothesis that PACAP can stimulate peripheral glial cells to produce tPA. More specifically, we addressed whether or not PACAP promoted the expression and activity of tPA in the Schwann cell line RT4-D6P2T, which shares biochemical and physical properties with Schwann cells. We found that PACAP dose- and time-dependently stimulated tPA expression both at the mRNA and protein level. Such effect was mimicked by maxadilan, a potent PAC1 receptor agonist, but not by the PACAP-related homolog VIP, suggesting a PAC1-mediated function. These actions appeared to be mediated at least in part by the Akt/CREB signaling cascade because wortmannin, a PI3K inhibitor, prevented peptide-driven CREB phosphorylation and tPA increase. Interestingly, treatment with BDNF mimicked PACAP actions on tPA, but acted through both the Akt and MAPK signaling pathways, while causing a robust increase in PACAP and PAC1 expression. PACAP6-38 totally blocked PACAP-driven tPA expression and in part hampered BDNF-mediated effects. We conclude that PACAP, acting through PAC1 receptors, stimulates tPA expression and activity in a Akt/CREB-dependent manner to promote proteolytic activity in Schwann-cell like cultures. Public Library of Science 2015-02-06 /pmc/articles/PMC4319891/ /pubmed/25658447 http://dx.doi.org/10.1371/journal.pone.0117799 Text en © 2015 Castorina et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Castorina, Alessandro Waschek, James A. Marzagalli, Rubina Cardile, Venera Drago, Filippo PACAP Interacts with PAC(1) Receptors to Induce Tissue Plasminogen Activator (tPA) Expression and Activity in Schwann Cell-Like Cultures |
title | PACAP Interacts with PAC(1) Receptors to Induce Tissue Plasminogen Activator (tPA) Expression and Activity in Schwann Cell-Like Cultures |
title_full | PACAP Interacts with PAC(1) Receptors to Induce Tissue Plasminogen Activator (tPA) Expression and Activity in Schwann Cell-Like Cultures |
title_fullStr | PACAP Interacts with PAC(1) Receptors to Induce Tissue Plasminogen Activator (tPA) Expression and Activity in Schwann Cell-Like Cultures |
title_full_unstemmed | PACAP Interacts with PAC(1) Receptors to Induce Tissue Plasminogen Activator (tPA) Expression and Activity in Schwann Cell-Like Cultures |
title_short | PACAP Interacts with PAC(1) Receptors to Induce Tissue Plasminogen Activator (tPA) Expression and Activity in Schwann Cell-Like Cultures |
title_sort | pacap interacts with pac(1) receptors to induce tissue plasminogen activator (tpa) expression and activity in schwann cell-like cultures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319891/ https://www.ncbi.nlm.nih.gov/pubmed/25658447 http://dx.doi.org/10.1371/journal.pone.0117799 |
work_keys_str_mv | AT castorinaalessandro pacapinteractswithpac1receptorstoinducetissueplasminogenactivatortpaexpressionandactivityinschwanncelllikecultures AT waschekjamesa pacapinteractswithpac1receptorstoinducetissueplasminogenactivatortpaexpressionandactivityinschwanncelllikecultures AT marzagallirubina pacapinteractswithpac1receptorstoinducetissueplasminogenactivatortpaexpressionandactivityinschwanncelllikecultures AT cardilevenera pacapinteractswithpac1receptorstoinducetissueplasminogenactivatortpaexpressionandactivityinschwanncelllikecultures AT dragofilippo pacapinteractswithpac1receptorstoinducetissueplasminogenactivatortpaexpressionandactivityinschwanncelllikecultures |